代谢组织源性柠檬酸生物材料通过柠檬酸介导的信号通路协调骨再生

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hui Xu, Xinyu Tan, Ethan Gerhard, Hao Zhang, Rohitraj Ray, Yuqi Wang, Sri-Rajasekhar Kothapalli, Elias B. Rizk, April D. Armstrong, Su Yan, Jian Yang
{"title":"代谢组织源性柠檬酸生物材料通过柠檬酸介导的信号通路协调骨再生","authors":"Hui Xu,&nbsp;Xinyu Tan,&nbsp;Ethan Gerhard,&nbsp;Hao Zhang,&nbsp;Rohitraj Ray,&nbsp;Yuqi Wang,&nbsp;Sri-Rajasekhar Kothapalli,&nbsp;Elias B. Rizk,&nbsp;April D. Armstrong,&nbsp;Su Yan,&nbsp;Jian Yang","doi":"10.1126/sciadv.ady2862","DOIUrl":null,"url":null,"abstract":"<div >Bone regeneration requires coordinated anabolic and catabolic signaling, yet the interplay between mammalian target of rapamycin complex 1 (mTORC1) and adenosine monophosphate–activated protein kinase (AMPK) pathways remains unclear. This study reveals that citrate, glutamine, and magnesium synergistically activate both pathways via calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)– and protein kinase B (Akt)–dependent signaling, bypassing the traditional adenosine monophosphate (AMP)/adenosine triphosphate (ATP) sensing mechanism. This dual activation supports sustained energy metabolism during osteogenesis and challenges the canonical antagonism between mTORC1 and AMPK. We developed CitraBoneQMg, a citrate-based biomaterial incorporating these components via one-pot synthesis. CitraBoneQMg provides sustained release, photoluminescent and photoacoustic imaging capabilities, and tunable mechanical properties. In vitro, it promotes osteogenesis by enhancing alkaline phosphatase (ALP) activity, osteogenic gene expression, and calcium deposition. In vivo, it accelerates bone regeneration in a rat calvarial defect model while promoting anti-inflammatory and neuroregenerative responses. We define this integrated effect as “metabotissugenesis,” offering a metabolically optimized approach to orthopedic biomaterial design.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady2862","citationCount":"0","resultStr":"{\"title\":\"Metabotissugenic citrate biomaterials orchestrate bone regeneration via citrate-mediated signaling pathways\",\"authors\":\"Hui Xu,&nbsp;Xinyu Tan,&nbsp;Ethan Gerhard,&nbsp;Hao Zhang,&nbsp;Rohitraj Ray,&nbsp;Yuqi Wang,&nbsp;Sri-Rajasekhar Kothapalli,&nbsp;Elias B. Rizk,&nbsp;April D. Armstrong,&nbsp;Su Yan,&nbsp;Jian Yang\",\"doi\":\"10.1126/sciadv.ady2862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Bone regeneration requires coordinated anabolic and catabolic signaling, yet the interplay between mammalian target of rapamycin complex 1 (mTORC1) and adenosine monophosphate–activated protein kinase (AMPK) pathways remains unclear. This study reveals that citrate, glutamine, and magnesium synergistically activate both pathways via calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)– and protein kinase B (Akt)–dependent signaling, bypassing the traditional adenosine monophosphate (AMP)/adenosine triphosphate (ATP) sensing mechanism. This dual activation supports sustained energy metabolism during osteogenesis and challenges the canonical antagonism between mTORC1 and AMPK. We developed CitraBoneQMg, a citrate-based biomaterial incorporating these components via one-pot synthesis. CitraBoneQMg provides sustained release, photoluminescent and photoacoustic imaging capabilities, and tunable mechanical properties. In vitro, it promotes osteogenesis by enhancing alkaline phosphatase (ALP) activity, osteogenic gene expression, and calcium deposition. In vivo, it accelerates bone regeneration in a rat calvarial defect model while promoting anti-inflammatory and neuroregenerative responses. We define this integrated effect as “metabotissugenesis,” offering a metabolically optimized approach to orthopedic biomaterial design.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ady2862\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ady2862\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady2862","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

骨再生需要协调的合成代谢和分解代谢信号,然而哺乳动物雷帕霉素靶蛋白复合物1 (mTORC1)和单磷酸腺苷活化蛋白激酶(AMPK)途径之间的相互作用尚不清楚。本研究表明,柠檬酸盐、谷氨酰胺和镁通过钙/钙调素依赖性蛋白激酶激酶2 (CaMKK2)和蛋白激酶B (Akt)依赖性信号通路协同激活这两种途径,绕过传统的单磷酸腺苷(AMP)/三磷酸腺苷(ATP)感应机制。这种双重激活支持成骨过程中持续的能量代谢,并挑战mTORC1和AMPK之间的典型拮抗作用。我们开发了CitraBoneQMg,这是一种基于柠檬酸盐的生物材料,通过一锅合成将这些成分结合在一起。CitraBoneQMg具有持续释放、光致发光和光声成像能力,以及可调的机械性能。在体外,它通过增强碱性磷酸酶(ALP)活性、成骨基因表达和钙沉积来促进成骨。在体内,它可以加速大鼠颅骨缺损模型的骨再生,同时促进抗炎和神经再生反应。我们将这种综合效应定义为“代谢组织生成”,为骨科生物材料的设计提供了一种代谢优化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metabotissugenic citrate biomaterials orchestrate bone regeneration via citrate-mediated signaling pathways

Metabotissugenic citrate biomaterials orchestrate bone regeneration via citrate-mediated signaling pathways
Bone regeneration requires coordinated anabolic and catabolic signaling, yet the interplay between mammalian target of rapamycin complex 1 (mTORC1) and adenosine monophosphate–activated protein kinase (AMPK) pathways remains unclear. This study reveals that citrate, glutamine, and magnesium synergistically activate both pathways via calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)– and protein kinase B (Akt)–dependent signaling, bypassing the traditional adenosine monophosphate (AMP)/adenosine triphosphate (ATP) sensing mechanism. This dual activation supports sustained energy metabolism during osteogenesis and challenges the canonical antagonism between mTORC1 and AMPK. We developed CitraBoneQMg, a citrate-based biomaterial incorporating these components via one-pot synthesis. CitraBoneQMg provides sustained release, photoluminescent and photoacoustic imaging capabilities, and tunable mechanical properties. In vitro, it promotes osteogenesis by enhancing alkaline phosphatase (ALP) activity, osteogenic gene expression, and calcium deposition. In vivo, it accelerates bone regeneration in a rat calvarial defect model while promoting anti-inflammatory and neuroregenerative responses. We define this integrated effect as “metabotissugenesis,” offering a metabolically optimized approach to orthopedic biomaterial design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信