球石藻生物矿化过程中富钙区室的动态变化

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alexander Triccas, Daniel M. Chevrier, Mariana Verezhak, Johannes Ihli, Manuel Guizar-Sicairos, Mirko Holler, André Scheffel, Noriaki Ozaki, Virginie Chamard, Rachel Wood, Tilman A. Grünewald, Fabio Nudelman
{"title":"球石藻生物矿化过程中富钙区室的动态变化","authors":"Alexander Triccas,&nbsp;Daniel M. Chevrier,&nbsp;Mariana Verezhak,&nbsp;Johannes Ihli,&nbsp;Manuel Guizar-Sicairos,&nbsp;Mirko Holler,&nbsp;André Scheffel,&nbsp;Noriaki Ozaki,&nbsp;Virginie Chamard,&nbsp;Rachel Wood,&nbsp;Tilman A. Grünewald,&nbsp;Fabio Nudelman","doi":"10.1126/sciadv.adv0618","DOIUrl":null,"url":null,"abstract":"<div >Coccolithophores are abundant marine phytoplankton that produce biomineralized calcite scales, called coccoliths, which sequester substantial amounts of carbon and play a substantial role in biogeochemical cycles. However, mechanisms underlying the storage and transport of ions essential for calcification remain unresolved. We used ptychographic x-ray computed tomography under cryogenic conditions to visualize intracellular calcium-rich structures involved in the storage of calcium ions in the coccolithophore species <i>Chrysotila carterae</i>. During calcification, we observed a range of structures, from small electron-dense bodies within larger compartments to denser and distributed globular compartments, before returning to small bodies once scale formation is complete. Nanobeam-scanning x-ray fluorescence measurements further revealed that these electron-dense bodies are rich in phosphorus and calcium (molar ratio of ~4:1). The dynamic nature of structures suggests that these bodies are part of the required cellular calcium ion transport pathways, a fundamental process critical for understanding the response of coccolithophores to climate change.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv0618","citationCount":"0","resultStr":"{\"title\":\"Dynamic change of calcium-rich compartments during coccolithophore biomineralization\",\"authors\":\"Alexander Triccas,&nbsp;Daniel M. Chevrier,&nbsp;Mariana Verezhak,&nbsp;Johannes Ihli,&nbsp;Manuel Guizar-Sicairos,&nbsp;Mirko Holler,&nbsp;André Scheffel,&nbsp;Noriaki Ozaki,&nbsp;Virginie Chamard,&nbsp;Rachel Wood,&nbsp;Tilman A. Grünewald,&nbsp;Fabio Nudelman\",\"doi\":\"10.1126/sciadv.adv0618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Coccolithophores are abundant marine phytoplankton that produce biomineralized calcite scales, called coccoliths, which sequester substantial amounts of carbon and play a substantial role in biogeochemical cycles. However, mechanisms underlying the storage and transport of ions essential for calcification remain unresolved. We used ptychographic x-ray computed tomography under cryogenic conditions to visualize intracellular calcium-rich structures involved in the storage of calcium ions in the coccolithophore species <i>Chrysotila carterae</i>. During calcification, we observed a range of structures, from small electron-dense bodies within larger compartments to denser and distributed globular compartments, before returning to small bodies once scale formation is complete. Nanobeam-scanning x-ray fluorescence measurements further revealed that these electron-dense bodies are rich in phosphorus and calcium (molar ratio of ~4:1). The dynamic nature of structures suggests that these bodies are part of the required cellular calcium ion transport pathways, a fundamental process critical for understanding the response of coccolithophores to climate change.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adv0618\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adv0618\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv0618","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

球石藻是丰富的海洋浮游植物,它们产生生物矿化方解石鳞片,称为球石藻,它吸收大量的碳,在生物地球化学循环中发挥重要作用。然而,钙化所必需的离子的储存和运输机制仍未得到解决。我们使用低温条件下的体表x射线计算机断层扫描来观察球石藻物种黄斑蝶体内钙离子储存的细胞内富钙结构。在钙化过程中,我们观察到一系列结构,从较大隔间内的小电子密集体到更密集和分布的球形隔间,然后在完成鳞片形成后返回小体。纳米束扫描x射线荧光测量进一步显示,这些电子致密体富含磷和钙(摩尔比约为4:1)。这些结构的动态性质表明,这些体是所需细胞钙离子运输途径的一部分,这是理解球石藻对气候变化响应的一个关键的基本过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic change of calcium-rich compartments during coccolithophore biomineralization

Dynamic change of calcium-rich compartments during coccolithophore biomineralization
Coccolithophores are abundant marine phytoplankton that produce biomineralized calcite scales, called coccoliths, which sequester substantial amounts of carbon and play a substantial role in biogeochemical cycles. However, mechanisms underlying the storage and transport of ions essential for calcification remain unresolved. We used ptychographic x-ray computed tomography under cryogenic conditions to visualize intracellular calcium-rich structures involved in the storage of calcium ions in the coccolithophore species Chrysotila carterae. During calcification, we observed a range of structures, from small electron-dense bodies within larger compartments to denser and distributed globular compartments, before returning to small bodies once scale formation is complete. Nanobeam-scanning x-ray fluorescence measurements further revealed that these electron-dense bodies are rich in phosphorus and calcium (molar ratio of ~4:1). The dynamic nature of structures suggests that these bodies are part of the required cellular calcium ion transport pathways, a fundamental process critical for understanding the response of coccolithophores to climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信