具有多晶弛豫相和双分布二次内含物的低温烧结BCZT基陶瓷的卓越储能性能

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kaibiao Xi, Yihao Li, Mupeng Zheng, Mankang Zhu, Yudong Hou
{"title":"具有多晶弛豫相和双分布二次内含物的低温烧结BCZT基陶瓷的卓越储能性能","authors":"Kaibiao Xi, Yihao Li, Mupeng Zheng, Mankang Zhu, Yudong Hou","doi":"10.1002/adfm.202511375","DOIUrl":null,"url":null,"abstract":"Environmentally friendly dielectric ceramic is a vital material utilized in energy storage capacitors, which has widespread applications in next‐generation high‐power pulse devices. However, the low energy conversion efficiency (<jats:italic>η</jats:italic>) originated from the polarization hysteresis loss and poor recoverable energy density (<jats:italic>W</jats:italic><jats:sub>rec</jats:sub>) resulted from unsatisfactory breakdown strength (<jats:italic>E</jats:italic><jats:sub>b</jats:sub>) are difficult to be effectively solved simultaneously. Herein, a novel strategy about polymorphic relaxor phase coupled with dual‐distribution secondary inclusions is proposed for designing low‐firing BiFeO<jats:sub>3</jats:sub> modified (Ba,Ca) (Zr,Ti)O<jats:sub>3</jats:sub> (BF‐BCZT) dielectric ceramics with comprehensive excellent energy storage performance. In the polymorphic relaxor phase, the polarization anisotropy is reduced, resulting in a more flattened free energy barrier and minimizing polarization hysteresis loss. Meanwhile, the characteristic of dual‐distribution secondary inclusions can reduce the average grain size and improve the insulated performance, thereby increasing the mechanical property and <jats:italic>E</jats:italic><jats:sub>b</jats:sub>. Accordingly, a high <jats:italic>W</jats:italic><jats:sub>rec</jats:sub> of ≈5.8 J cm<jats:sup>−3</jats:sup> and <jats:italic>η</jats:italic> of ≈91.3% under a large <jats:italic>E</jats:italic><jats:sub>b</jats:sub> ≈570 kV cm<jats:sup>−1</jats:sup> are achieved together with outstanding mechanical property (<jats:italic>H</jats:italic><jats:sub>v</jats:sub> = 7.58 GPa), temperature stability, frequency stability and charge‐discharge ability. This work provides a fine paradigm for designing the dielectric ceramic to meet the demanding requirements of advanced energy storage applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"115 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exceptional Energy‐Storage in Low‐Temperature Sintered BCZT‐Based Ceramics Featuring Polymorphic Relaxor Phase Coupled With Dual‐Distribution Secondary Inclusions\",\"authors\":\"Kaibiao Xi, Yihao Li, Mupeng Zheng, Mankang Zhu, Yudong Hou\",\"doi\":\"10.1002/adfm.202511375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmentally friendly dielectric ceramic is a vital material utilized in energy storage capacitors, which has widespread applications in next‐generation high‐power pulse devices. However, the low energy conversion efficiency (<jats:italic>η</jats:italic>) originated from the polarization hysteresis loss and poor recoverable energy density (<jats:italic>W</jats:italic><jats:sub>rec</jats:sub>) resulted from unsatisfactory breakdown strength (<jats:italic>E</jats:italic><jats:sub>b</jats:sub>) are difficult to be effectively solved simultaneously. Herein, a novel strategy about polymorphic relaxor phase coupled with dual‐distribution secondary inclusions is proposed for designing low‐firing BiFeO<jats:sub>3</jats:sub> modified (Ba,Ca) (Zr,Ti)O<jats:sub>3</jats:sub> (BF‐BCZT) dielectric ceramics with comprehensive excellent energy storage performance. In the polymorphic relaxor phase, the polarization anisotropy is reduced, resulting in a more flattened free energy barrier and minimizing polarization hysteresis loss. Meanwhile, the characteristic of dual‐distribution secondary inclusions can reduce the average grain size and improve the insulated performance, thereby increasing the mechanical property and <jats:italic>E</jats:italic><jats:sub>b</jats:sub>. Accordingly, a high <jats:italic>W</jats:italic><jats:sub>rec</jats:sub> of ≈5.8 J cm<jats:sup>−3</jats:sup> and <jats:italic>η</jats:italic> of ≈91.3% under a large <jats:italic>E</jats:italic><jats:sub>b</jats:sub> ≈570 kV cm<jats:sup>−1</jats:sup> are achieved together with outstanding mechanical property (<jats:italic>H</jats:italic><jats:sub>v</jats:sub> = 7.58 GPa), temperature stability, frequency stability and charge‐discharge ability. This work provides a fine paradigm for designing the dielectric ceramic to meet the demanding requirements of advanced energy storage applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202511375\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511375","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

环境友好型介质陶瓷是一种重要的储能电容器材料,在下一代大功率脉冲器件中有着广泛的应用。然而,由于极化迟滞损耗导致的能量转换效率(η)低和击穿强度(Eb)不理想导致的可恢复能量密度(Wrec)差是难以同时得到有效解决的问题。本文提出了一种多晶弛豫相耦合双分布二次夹杂物的新策略,用于设计具有综合优异储能性能的低烧BiFeO3修饰(Ba,Ca) (Zr,Ti)O3 (BF‐BCZT)介电陶瓷。在多晶弛豫相,极化各向异性降低,导致自由能垒更平坦,极化滞后损失最小。同时,双分布的二次夹杂物可以减小材料的平均晶粒尺寸,提高绝缘性能,从而提高材料的力学性能和电化学性能。因此,在大Eb≈570 kV cm−1下,材料的Wrec≈5.8 J cm−3,η≈91.3%,具有优异的力学性能(Hv = 7.58 GPa)、温度稳定性、频率稳定性和充放电能力。这项工作为设计满足先进储能应用要求的介电陶瓷提供了一个很好的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exceptional Energy‐Storage in Low‐Temperature Sintered BCZT‐Based Ceramics Featuring Polymorphic Relaxor Phase Coupled With Dual‐Distribution Secondary Inclusions
Environmentally friendly dielectric ceramic is a vital material utilized in energy storage capacitors, which has widespread applications in next‐generation high‐power pulse devices. However, the low energy conversion efficiency (η) originated from the polarization hysteresis loss and poor recoverable energy density (Wrec) resulted from unsatisfactory breakdown strength (Eb) are difficult to be effectively solved simultaneously. Herein, a novel strategy about polymorphic relaxor phase coupled with dual‐distribution secondary inclusions is proposed for designing low‐firing BiFeO3 modified (Ba,Ca) (Zr,Ti)O3 (BF‐BCZT) dielectric ceramics with comprehensive excellent energy storage performance. In the polymorphic relaxor phase, the polarization anisotropy is reduced, resulting in a more flattened free energy barrier and minimizing polarization hysteresis loss. Meanwhile, the characteristic of dual‐distribution secondary inclusions can reduce the average grain size and improve the insulated performance, thereby increasing the mechanical property and Eb. Accordingly, a high Wrec of ≈5.8 J cm−3 and η of ≈91.3% under a large Eb ≈570 kV cm−1 are achieved together with outstanding mechanical property (Hv = 7.58 GPa), temperature stability, frequency stability and charge‐discharge ability. This work provides a fine paradigm for designing the dielectric ceramic to meet the demanding requirements of advanced energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信