高分子量蛋白质在ghz级光谱仪上的超高分辨率固态核磁共振

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Songlin Wang, Thirupathi Ravula, John A. Stringer, Peter L. Gor’kov, Owen A. Warmuth, Christopher G. Williams, Alex F. Thome, Leonard J. Mueller, Chad M. Rienstra
{"title":"高分子量蛋白质在ghz级光谱仪上的超高分辨率固态核磁共振","authors":"Songlin Wang,&nbsp;Thirupathi Ravula,&nbsp;John A. Stringer,&nbsp;Peter L. Gor’kov,&nbsp;Owen A. Warmuth,&nbsp;Christopher G. Williams,&nbsp;Alex F. Thome,&nbsp;Leonard J. Mueller,&nbsp;Chad M. Rienstra","doi":"10.1126/sciadv.adx6016","DOIUrl":null,"url":null,"abstract":"<div >Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique with broad impact across the physical and life sciences, and ultrahigh field (UHF), gigahertz-class NMR spectrometers offer exceptional performance, including superior resolution and sensitivity. In solid-state NMR (SSNMR), resolution is primarily constrained by instrumentation rather than molecular tumbling, making it well suited for studying large and complex systems. To fully leverage UHF magnets for SSNMR, it is essential to eliminate line broadening arising from magnetic field drift and couplings among the nuclear spins. We address these challenges using external <sup>2</sup>H lock to compensate for the field drift and long-observation-window band-selective homonuclear decoupling to suppress <sup>13</sup>C homonuclear couplings. We achieve better than 0.2–parts per million resolution in proteins up to 144 kilodalton, enabling unique site resolution for more than 500 amide backbone pairs in two-dimensional experiments. This exceeds the resolution available from solution NMR for large biological molecules, greatly expanding the potential of gigahertz-class NMR for research in life sciences.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx6016","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh-resolution solid-state NMR for high–molecular weight proteins on GHz-class spectrometers\",\"authors\":\"Songlin Wang,&nbsp;Thirupathi Ravula,&nbsp;John A. Stringer,&nbsp;Peter L. Gor’kov,&nbsp;Owen A. Warmuth,&nbsp;Christopher G. Williams,&nbsp;Alex F. Thome,&nbsp;Leonard J. Mueller,&nbsp;Chad M. Rienstra\",\"doi\":\"10.1126/sciadv.adx6016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique with broad impact across the physical and life sciences, and ultrahigh field (UHF), gigahertz-class NMR spectrometers offer exceptional performance, including superior resolution and sensitivity. In solid-state NMR (SSNMR), resolution is primarily constrained by instrumentation rather than molecular tumbling, making it well suited for studying large and complex systems. To fully leverage UHF magnets for SSNMR, it is essential to eliminate line broadening arising from magnetic field drift and couplings among the nuclear spins. We address these challenges using external <sup>2</sup>H lock to compensate for the field drift and long-observation-window band-selective homonuclear decoupling to suppress <sup>13</sup>C homonuclear couplings. We achieve better than 0.2–parts per million resolution in proteins up to 144 kilodalton, enabling unique site resolution for more than 500 amide backbone pairs in two-dimensional experiments. This exceeds the resolution available from solution NMR for large biological molecules, greatly expanding the potential of gigahertz-class NMR for research in life sciences.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adx6016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adx6016\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx6016","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

核磁共振(NMR)光谱学是一项强大的技术,在物理和生命科学领域具有广泛的影响,超高场(UHF),千兆赫级核磁共振光谱仪提供卓越的性能,包括卓越的分辨率和灵敏度。在固态核磁共振(SSNMR)中,分辨率主要受仪器而不是分子翻滚的限制,这使得它非常适合研究大型和复杂的系统。为了充分利用超高频磁体进行SSNMR,必须消除由磁场漂移和核自旋之间的耦合引起的线宽。我们使用外部2h锁来补偿场漂移和长观测窗口带选择性同核去耦来抑制13c同核耦合来解决这些挑战。我们在高达144千道尔顿的蛋白质中实现了优于百万分之0.2的分辨率,在二维实验中实现了500多个酰胺主链对的独特位点分辨率。这超过了溶液核磁共振对大生物分子的分辨率,极大地扩展了千兆赫级核磁共振在生命科学研究中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrahigh-resolution solid-state NMR for high–molecular weight proteins on GHz-class spectrometers

Ultrahigh-resolution solid-state NMR for high–molecular weight proteins on GHz-class spectrometers
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique with broad impact across the physical and life sciences, and ultrahigh field (UHF), gigahertz-class NMR spectrometers offer exceptional performance, including superior resolution and sensitivity. In solid-state NMR (SSNMR), resolution is primarily constrained by instrumentation rather than molecular tumbling, making it well suited for studying large and complex systems. To fully leverage UHF magnets for SSNMR, it is essential to eliminate line broadening arising from magnetic field drift and couplings among the nuclear spins. We address these challenges using external 2H lock to compensate for the field drift and long-observation-window band-selective homonuclear decoupling to suppress 13C homonuclear couplings. We achieve better than 0.2–parts per million resolution in proteins up to 144 kilodalton, enabling unique site resolution for more than 500 amide backbone pairs in two-dimensional experiments. This exceeds the resolution available from solution NMR for large biological molecules, greatly expanding the potential of gigahertz-class NMR for research in life sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信