一种超强的脱碳结构材料,通过生物力学过程通过微生物辅助细胞壁工程实现

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ziyang Lu, Luhe Qi, Junqing Chen, Cai Lu, Jing Huang, Lu Chen, Yuying Wu, Jiahao Feng, Jinyou Lin, Ze Liu, Erlantz Lizundia, Chaoji Chen
{"title":"一种超强的脱碳结构材料,通过生物力学过程通过微生物辅助细胞壁工程实现","authors":"Ziyang Lu,&nbsp;Luhe Qi,&nbsp;Junqing Chen,&nbsp;Cai Lu,&nbsp;Jing Huang,&nbsp;Lu Chen,&nbsp;Yuying Wu,&nbsp;Jiahao Feng,&nbsp;Jinyou Lin,&nbsp;Ze Liu,&nbsp;Erlantz Lizundia,&nbsp;Chaoji Chen","doi":"10.1126/sciadv.ady0183","DOIUrl":null,"url":null,"abstract":"<div >Lightweight and high-strength structural materials promise exceptional applications in advanced engineering fields. As a productive and sustainable material, wood exhibits exceptional potential to be converted into high-performance structural materials. Inspired by ancient buried wood—a naturally formed material after wood endures in microbial-rich and high-pressure environments for thousands of years—here, we demonstrate a biomechanochemical process to rapidly transform natural wood into artificial ancient buried wood (named Bio-Strong-Wood). Biotreatment depolymerizes the lignin and softens the cell wall. Then, Bio-Strong-Wood components are linked via a strong network of hydrogen and covalent bonds through the mechanochemical treatment. This results in a substantially enhanced mechanical strength (539 ± 21.7 megapascals), which outperforms the SAE 304 stainless steel. In addition, life cycle and technoeconomic assessments reveal that the obtained material achieves negative carbon emissions of 1.17 kilograms of carbon dioxide equivalent per kilogram. Overall, our work provides an economically competitive, environmentally sustainable, and decarbonizing alternative to existing structural materials.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ady0183","citationCount":"0","resultStr":"{\"title\":\"A superstrong, decarbonizing structural material enabled by microbe-assisted cell wall engineering via a biomechanochemical process\",\"authors\":\"Ziyang Lu,&nbsp;Luhe Qi,&nbsp;Junqing Chen,&nbsp;Cai Lu,&nbsp;Jing Huang,&nbsp;Lu Chen,&nbsp;Yuying Wu,&nbsp;Jiahao Feng,&nbsp;Jinyou Lin,&nbsp;Ze Liu,&nbsp;Erlantz Lizundia,&nbsp;Chaoji Chen\",\"doi\":\"10.1126/sciadv.ady0183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Lightweight and high-strength structural materials promise exceptional applications in advanced engineering fields. As a productive and sustainable material, wood exhibits exceptional potential to be converted into high-performance structural materials. Inspired by ancient buried wood—a naturally formed material after wood endures in microbial-rich and high-pressure environments for thousands of years—here, we demonstrate a biomechanochemical process to rapidly transform natural wood into artificial ancient buried wood (named Bio-Strong-Wood). Biotreatment depolymerizes the lignin and softens the cell wall. Then, Bio-Strong-Wood components are linked via a strong network of hydrogen and covalent bonds through the mechanochemical treatment. This results in a substantially enhanced mechanical strength (539 ± 21.7 megapascals), which outperforms the SAE 304 stainless steel. In addition, life cycle and technoeconomic assessments reveal that the obtained material achieves negative carbon emissions of 1.17 kilograms of carbon dioxide equivalent per kilogram. Overall, our work provides an economically competitive, environmentally sustainable, and decarbonizing alternative to existing structural materials.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 30\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ady0183\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ady0183\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ady0183","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

轻质和高强度的结构材料在先进的工程领域有特殊的应用前景。作为一种高效和可持续的材料,木材显示出转化为高性能结构材料的非凡潜力。受古埋木(木材在富含微生物和高压的环境中经历数千年后自然形成的材料)的启发,我们展示了一个生物力学过程,将天然木材快速转化为人工古埋木(命名为Bio-Strong-Wood)。生物处理使木质素解聚,软化细胞壁。然后,Bio-Strong-Wood组件通过机械化学处理通过一个强大的氢和共价键网络连接起来。这大大提高了机械强度(539±21.7兆帕斯卡),优于SAE 304不锈钢。此外,生命周期和技术经济评估显示,所获得的材料达到负碳排放1.17公斤二氧化碳当量每公斤。总的来说,我们的工作提供了一种具有经济竞争力、环境可持续性和脱碳的替代现有结构材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A superstrong, decarbonizing structural material enabled by microbe-assisted cell wall engineering via a biomechanochemical process

A superstrong, decarbonizing structural material enabled by microbe-assisted cell wall engineering via a biomechanochemical process
Lightweight and high-strength structural materials promise exceptional applications in advanced engineering fields. As a productive and sustainable material, wood exhibits exceptional potential to be converted into high-performance structural materials. Inspired by ancient buried wood—a naturally formed material after wood endures in microbial-rich and high-pressure environments for thousands of years—here, we demonstrate a biomechanochemical process to rapidly transform natural wood into artificial ancient buried wood (named Bio-Strong-Wood). Biotreatment depolymerizes the lignin and softens the cell wall. Then, Bio-Strong-Wood components are linked via a strong network of hydrogen and covalent bonds through the mechanochemical treatment. This results in a substantially enhanced mechanical strength (539 ± 21.7 megapascals), which outperforms the SAE 304 stainless steel. In addition, life cycle and technoeconomic assessments reveal that the obtained material achieves negative carbon emissions of 1.17 kilograms of carbon dioxide equivalent per kilogram. Overall, our work provides an economically competitive, environmentally sustainable, and decarbonizing alternative to existing structural materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信