Mo掺杂和Mn空位对钠离子电池正极材料Na4MnV(PO4)3/C电化学性能的协同影响

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Ye Sun , Jiaxin Ou , Yiwen Guo , Honghai Zhang , Yuchao He , Yachun Lu , Quanqi Chen
{"title":"Mo掺杂和Mn空位对钠离子电池正极材料Na4MnV(PO4)3/C电化学性能的协同影响","authors":"Ye Sun ,&nbsp;Jiaxin Ou ,&nbsp;Yiwen Guo ,&nbsp;Honghai Zhang ,&nbsp;Yuchao He ,&nbsp;Yachun Lu ,&nbsp;Quanqi Chen","doi":"10.1016/j.electacta.2025.146985","DOIUrl":null,"url":null,"abstract":"<div><div>Na<sub>4</sub>MnV(PO<sub>4</sub>)<sub>3</sub> (NMVP) has become an auspicious substitute for Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> on account of its lower environmental toxicity, reduced production costs and elevated working voltage. Nevertheless, sodium storage performance of NMVP is compromised arising from Mn<sup>3+</sup>-induced Jahn-Teller distortion and low electronic conductivity. Herein, a strategy combining cation doping with transition metal site vacancies was employed to enhance the cyclability and rate capability of NMVP/C. The synergistic effects of Mo⁶⁺ doping into Mn sites and Mn vacancies in NMVP simultaneously alleviate Jahn-Teller distortion, upgrade electrochemical reaction reversibility, bulk electronic conductivity and Na⁺ diffusion coefficients in electroactive material, and reduce charge transfer resistance, leading to the improved electrochemical performance. The optimal Mo-doped NMVP/C with Mn vacancies (Na<sub>4</sub>Mn<sub>0.91</sub>Mo<sub>0.03</sub>V(PO<sub>4</sub>)<sub>3</sub>/C, NMVP-0.03Mo) outperforms NMVP/C and the Mo-doped NMVP/C without Mn vacancies (Na<sub>3.88</sub>Mn<sub>0.97</sub>Mo<sub>0.03</sub>V(PO<sub>4</sub>)<sub>3</sub>/C) in rate capability, cyclability and capacity. NMVP-0.03Mo shows superior electrochemical performance with high initial discharge capacities of 98.8 mAh g⁻¹ (0.2C) and 82.1 mAh g⁻¹ (10C), maintaining capacity retention rates of 89 % and 90.4 % after 100 cycles. By comparison, NMVP/C delivers lower initial capacities (94.2 mAh g⁻¹ at 0.2C, 70.5 mAh g⁻¹ at 10C) with the reduced capacity retention rates of 67 % and 87.4 %, correspondingly. While Na<sub>3.88</sub>Mn<sub>0.97</sub>Mo<sub>0.03</sub>V(PO<sub>4</sub>)<sub>3</sub>/C presents the lowest initial discharge capacities (85 mAh g⁻¹ at 0.2C, 66 mAh g⁻¹ at 10C) with intermediate retention rates of 85.9 % and 88.5 %, respectively. These findings suggest that cation doping/transition metal site vacancies may be one of the effective strategies for electrochemical improvement of Mn-based polyanionic electrodes.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"538 ","pages":"Article 146985"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergetic effects of Mo doping and Mn site vacancies on electrochemical performance of Na4MnV(PO4)3/C cathode material for sodium-ion batteries\",\"authors\":\"Ye Sun ,&nbsp;Jiaxin Ou ,&nbsp;Yiwen Guo ,&nbsp;Honghai Zhang ,&nbsp;Yuchao He ,&nbsp;Yachun Lu ,&nbsp;Quanqi Chen\",\"doi\":\"10.1016/j.electacta.2025.146985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Na<sub>4</sub>MnV(PO<sub>4</sub>)<sub>3</sub> (NMVP) has become an auspicious substitute for Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> on account of its lower environmental toxicity, reduced production costs and elevated working voltage. Nevertheless, sodium storage performance of NMVP is compromised arising from Mn<sup>3+</sup>-induced Jahn-Teller distortion and low electronic conductivity. Herein, a strategy combining cation doping with transition metal site vacancies was employed to enhance the cyclability and rate capability of NMVP/C. The synergistic effects of Mo⁶⁺ doping into Mn sites and Mn vacancies in NMVP simultaneously alleviate Jahn-Teller distortion, upgrade electrochemical reaction reversibility, bulk electronic conductivity and Na⁺ diffusion coefficients in electroactive material, and reduce charge transfer resistance, leading to the improved electrochemical performance. The optimal Mo-doped NMVP/C with Mn vacancies (Na<sub>4</sub>Mn<sub>0.91</sub>Mo<sub>0.03</sub>V(PO<sub>4</sub>)<sub>3</sub>/C, NMVP-0.03Mo) outperforms NMVP/C and the Mo-doped NMVP/C without Mn vacancies (Na<sub>3.88</sub>Mn<sub>0.97</sub>Mo<sub>0.03</sub>V(PO<sub>4</sub>)<sub>3</sub>/C) in rate capability, cyclability and capacity. NMVP-0.03Mo shows superior electrochemical performance with high initial discharge capacities of 98.8 mAh g⁻¹ (0.2C) and 82.1 mAh g⁻¹ (10C), maintaining capacity retention rates of 89 % and 90.4 % after 100 cycles. By comparison, NMVP/C delivers lower initial capacities (94.2 mAh g⁻¹ at 0.2C, 70.5 mAh g⁻¹ at 10C) with the reduced capacity retention rates of 67 % and 87.4 %, correspondingly. While Na<sub>3.88</sub>Mn<sub>0.97</sub>Mo<sub>0.03</sub>V(PO<sub>4</sub>)<sub>3</sub>/C presents the lowest initial discharge capacities (85 mAh g⁻¹ at 0.2C, 66 mAh g⁻¹ at 10C) with intermediate retention rates of 85.9 % and 88.5 %, respectively. These findings suggest that cation doping/transition metal site vacancies may be one of the effective strategies for electrochemical improvement of Mn-based polyanionic electrodes.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"538 \",\"pages\":\"Article 146985\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625013453\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625013453","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

Na4MnV(PO4)3 (NMVP)因其环境毒性低、生产成本低、工作电压高而成为Na3V2(PO4)3的理想替代品。然而,NMVP的钠存储性能受到Mn3+诱导的Jahn-Teller畸变和低电子导电性的影响。本文采用阳离子掺杂和过渡金属空位相结合的策略来提高NMVP/C的可循环性和速率能力。Mo +在NMVP中掺杂Mn位点和Mn空位的协同作用,同时缓解了Jahn-Teller畸变,提高了电化学反应的可逆性、体电子导电性和Na +在电活性材料中的扩散系数,降低了电荷转移电阻,从而提高了电化学性能。在速率性能、可循环性和容量方面,最优的Mn空位掺杂NMVP/C (Na4Mn0.91Mo0.03V(PO4)3/C, NMVP-0.03 mo)优于NMVP/C和无Mn空位掺杂NMVP/C (Na3.88Mn0.97Mo0.03V(PO4)3/C)。NMVP-0.03Mo具有优异的电化学性能,初始放电容量为98.8 mAh g⁻¹(0.2C)和82.1 mAh g⁻¹(10C),循环100次后容量保持率分别为89%和90.4%。相比之下,NMVP/C提供较低的初始容量(0.2C时的94.2 mAh g -⁻,10C时的70.5 mAh g -⁻),相应的容量保留率降低了67%和87.4%。Na3.88Mn0.97Mo0.03V(PO4)3/C具有最低的初始放电容量(0.2C时85 mAh g⁻¹,10C时66 mAh g⁻¹),中间保留率分别为85.9%和88.5%。这些发现表明,阳离子掺杂/过渡金属空位可能是改善锰基聚阴离子电极电化学性能的有效策略之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergetic effects of Mo doping and Mn site vacancies on electrochemical performance of Na4MnV(PO4)3/C cathode material for sodium-ion batteries

Synergetic effects of Mo doping and Mn site vacancies on electrochemical performance of Na4MnV(PO4)3/C cathode material for sodium-ion batteries

Synergetic effects of Mo doping and Mn site vacancies on electrochemical performance of Na4MnV(PO4)3/C cathode material for sodium-ion batteries
Na4MnV(PO4)3 (NMVP) has become an auspicious substitute for Na3V2(PO4)3 on account of its lower environmental toxicity, reduced production costs and elevated working voltage. Nevertheless, sodium storage performance of NMVP is compromised arising from Mn3+-induced Jahn-Teller distortion and low electronic conductivity. Herein, a strategy combining cation doping with transition metal site vacancies was employed to enhance the cyclability and rate capability of NMVP/C. The synergistic effects of Mo⁶⁺ doping into Mn sites and Mn vacancies in NMVP simultaneously alleviate Jahn-Teller distortion, upgrade electrochemical reaction reversibility, bulk electronic conductivity and Na⁺ diffusion coefficients in electroactive material, and reduce charge transfer resistance, leading to the improved electrochemical performance. The optimal Mo-doped NMVP/C with Mn vacancies (Na4Mn0.91Mo0.03V(PO4)3/C, NMVP-0.03Mo) outperforms NMVP/C and the Mo-doped NMVP/C without Mn vacancies (Na3.88Mn0.97Mo0.03V(PO4)3/C) in rate capability, cyclability and capacity. NMVP-0.03Mo shows superior electrochemical performance with high initial discharge capacities of 98.8 mAh g⁻¹ (0.2C) and 82.1 mAh g⁻¹ (10C), maintaining capacity retention rates of 89 % and 90.4 % after 100 cycles. By comparison, NMVP/C delivers lower initial capacities (94.2 mAh g⁻¹ at 0.2C, 70.5 mAh g⁻¹ at 10C) with the reduced capacity retention rates of 67 % and 87.4 %, correspondingly. While Na3.88Mn0.97Mo0.03V(PO4)3/C presents the lowest initial discharge capacities (85 mAh g⁻¹ at 0.2C, 66 mAh g⁻¹ at 10C) with intermediate retention rates of 85.9 % and 88.5 %, respectively. These findings suggest that cation doping/transition metal site vacancies may be one of the effective strategies for electrochemical improvement of Mn-based polyanionic electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信