{"title":"泛素链可变性指导底物的Tul1泛素连接酶复合物到不同的降解途径。","authors":"Devon D Dennison,Ryan D Baldridge","doi":"10.1083/jcb.202312133","DOIUrl":null,"url":null,"abstract":"Cellular protein quality control consists of multiple, networked systems that survey and maintain a healthy eukaryotic proteome. In Saccharomyces cerevisiae, the transmembrane ubiquitin ligase 1 (Tul1) complex is an integral membrane protein quality control system that functions within the Golgi-endosomal system. Golgi-localized Tul1 complexes target proteins for degradation by either the cytosolic proteasome or the vacuole. To understand how the complex directs substrates for degradation, we developed high-throughput functional assays for deep mutational scanning analysis of the Tul1 ubiquitin ligase. We identified mutations that disrupted Tul1 interactions with the complex or altered complex specificity by disrupting substrate polyubiquitination. This work demonstrates that Tul1 plays an important role in directing substrate degradation by influencing polyubiquitin chain length and provides tools for future study of the complex.","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"98 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ubiquitin chain variability directs substrates of the Tul1 ubiquitin ligase complex to different degradation pathways.\",\"authors\":\"Devon D Dennison,Ryan D Baldridge\",\"doi\":\"10.1083/jcb.202312133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular protein quality control consists of multiple, networked systems that survey and maintain a healthy eukaryotic proteome. In Saccharomyces cerevisiae, the transmembrane ubiquitin ligase 1 (Tul1) complex is an integral membrane protein quality control system that functions within the Golgi-endosomal system. Golgi-localized Tul1 complexes target proteins for degradation by either the cytosolic proteasome or the vacuole. To understand how the complex directs substrates for degradation, we developed high-throughput functional assays for deep mutational scanning analysis of the Tul1 ubiquitin ligase. We identified mutations that disrupted Tul1 interactions with the complex or altered complex specificity by disrupting substrate polyubiquitination. This work demonstrates that Tul1 plays an important role in directing substrate degradation by influencing polyubiquitin chain length and provides tools for future study of the complex.\",\"PeriodicalId\":15211,\"journal\":{\"name\":\"Journal of Cell Biology\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1083/jcb.202312133\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202312133","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ubiquitin chain variability directs substrates of the Tul1 ubiquitin ligase complex to different degradation pathways.
Cellular protein quality control consists of multiple, networked systems that survey and maintain a healthy eukaryotic proteome. In Saccharomyces cerevisiae, the transmembrane ubiquitin ligase 1 (Tul1) complex is an integral membrane protein quality control system that functions within the Golgi-endosomal system. Golgi-localized Tul1 complexes target proteins for degradation by either the cytosolic proteasome or the vacuole. To understand how the complex directs substrates for degradation, we developed high-throughput functional assays for deep mutational scanning analysis of the Tul1 ubiquitin ligase. We identified mutations that disrupted Tul1 interactions with the complex or altered complex specificity by disrupting substrate polyubiquitination. This work demonstrates that Tul1 plays an important role in directing substrate degradation by influencing polyubiquitin chain length and provides tools for future study of the complex.
期刊介绍:
The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.