提高禾草杀菌素S效价和克服溶血毒性的机器学习方法。

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
John T. Kalyvas, Yifei Wang, John R. Horsley and Andrew D. Abell*, 
{"title":"提高禾草杀菌素S效价和克服溶血毒性的机器学习方法。","authors":"John T. Kalyvas,&nbsp;Yifei Wang,&nbsp;John R. Horsley and Andrew D. Abell*,&nbsp;","doi":"10.1021/acs.jmedchem.5c01054","DOIUrl":null,"url":null,"abstract":"<p >Antibiotic resistance is a global health crisis, with multidrug-resistant pathogens like methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) demanding next-generation therapeutics. Tackling this silent pandemic requires innovative strategies beyond traditional drug discovery. We present a machine-learning (ML)-driven computational pipeline for redesigning FDA-approved drugs, applied here to the cyclic antibiotic gramicidin S, historically limited to topical use due to hemolytic toxicity. Leveraging a proprietary analogue data set, the model identified key molecular descriptors linked to potency and safety, yielding several potent, nontoxic candidates. Peptide <b>2</b> expanded the therapeutic window 42-fold, eliminating hemolysis at bactericidal doses. Peptide <b>9</b> achieved a significant 2-fold increase in potency against MRSA (MIC: 2 μg/mL) and improved the therapeutic index 6-fold. These analogues represent the most significant enhancement to the safety and efficacy of gramicidin S to date, enabling potential systemic MRSA treatment. Our ML-guided framework offers a powerful, generalizable platform for optimizing other FDA-approved drugs across therapeutic areas.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"68 15","pages":"16093–16102"},"PeriodicalIF":6.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S\",\"authors\":\"John T. Kalyvas,&nbsp;Yifei Wang,&nbsp;John R. Horsley and Andrew D. Abell*,&nbsp;\",\"doi\":\"10.1021/acs.jmedchem.5c01054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Antibiotic resistance is a global health crisis, with multidrug-resistant pathogens like methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) demanding next-generation therapeutics. Tackling this silent pandemic requires innovative strategies beyond traditional drug discovery. We present a machine-learning (ML)-driven computational pipeline for redesigning FDA-approved drugs, applied here to the cyclic antibiotic gramicidin S, historically limited to topical use due to hemolytic toxicity. Leveraging a proprietary analogue data set, the model identified key molecular descriptors linked to potency and safety, yielding several potent, nontoxic candidates. Peptide <b>2</b> expanded the therapeutic window 42-fold, eliminating hemolysis at bactericidal doses. Peptide <b>9</b> achieved a significant 2-fold increase in potency against MRSA (MIC: 2 μg/mL) and improved the therapeutic index 6-fold. These analogues represent the most significant enhancement to the safety and efficacy of gramicidin S to date, enabling potential systemic MRSA treatment. Our ML-guided framework offers a powerful, generalizable platform for optimizing other FDA-approved drugs across therapeutic areas.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"68 15\",\"pages\":\"16093–16102\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c01054\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c01054","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

抗生素耐药性是一个全球性的健康危机,耐甲氧西林金黄色葡萄球菌(MRSA)等多重耐药病原体需要新一代治疗方法。应对这一无声的大流行病需要超越传统药物发现的创新战略。我们提出了一个机器学习(ML)驱动的计算管道,用于重新设计fda批准的药物,应用于循环抗生素gramicidin S,由于溶血毒性,历史上仅限于局部使用。利用专有的模拟数据集,该模型确定了与效力和安全性相关的关键分子描述符,产生了几种有效的无毒候选物。肽2将治疗窗口扩大了42倍,在杀菌剂量下消除了溶血。Peptide 9对MRSA的效价显著提高2倍(MIC: 2 μg/mL),治疗指数提高6倍。这些类似物代表了迄今为止对gramicidin S的安全性和有效性的最显著增强,使潜在的系统性MRSA治疗成为可能。我们的机器学习指导框架为优化其他fda批准的跨治疗领域的药物提供了一个强大的、通用的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S

Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S

Antibiotic resistance is a global health crisis, with multidrug-resistant pathogens like methicillin-resistant Staphylococcus aureus (MRSA) demanding next-generation therapeutics. Tackling this silent pandemic requires innovative strategies beyond traditional drug discovery. We present a machine-learning (ML)-driven computational pipeline for redesigning FDA-approved drugs, applied here to the cyclic antibiotic gramicidin S, historically limited to topical use due to hemolytic toxicity. Leveraging a proprietary analogue data set, the model identified key molecular descriptors linked to potency and safety, yielding several potent, nontoxic candidates. Peptide 2 expanded the therapeutic window 42-fold, eliminating hemolysis at bactericidal doses. Peptide 9 achieved a significant 2-fold increase in potency against MRSA (MIC: 2 μg/mL) and improved the therapeutic index 6-fold. These analogues represent the most significant enhancement to the safety and efficacy of gramicidin S to date, enabling potential systemic MRSA treatment. Our ML-guided framework offers a powerful, generalizable platform for optimizing other FDA-approved drugs across therapeutic areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信