Kamil Wojciechowski*, Mario Campana, Agnieszka Samel and Emilia Baran,
{"title":"玉米蛋白单分子膜:表征及其与(生物)表面活性剂的相互作用。","authors":"Kamil Wojciechowski*, Mario Campana, Agnieszka Samel and Emilia Baran, ","doi":"10.1021/acs.langmuir.5c02426","DOIUrl":null,"url":null,"abstract":"<p >Zein is the main protein of corn seeds, which is often employed in food packaging and as a model of keratin. In this study, zein monolayers were deposited from nonconventional solvents: aqueous ethanol and acetic acid, on pure water that was later exchanged for 1% (bio)surfactant solutions: SDS, CTAB, Triton X-100, and the saponin-rich plant extracts of soapwort (<i>Saponaria officinalis</i> L.) and cowherb (<i>Saponaria vaccaria</i> [P. Mill.] Rauschert), as well as Quillaja bark saponins (QBS). The monolayers on pure water could be reversibly compressed up to ∼47 mN/m. On the basis of neutron reflectivity (NR) results, the liquid expanded–liquid expanded (LE-LE) transition observed at π ≈ 30 mN/m was assigned to an expulsion of the well-packed monolayer initially located on the air side of the interface, toward the aqueous side. The phase transition was accompanied by an increase in the layer thickness (from ∼1 to ∼6 nm) and the adsorbed amount (from ∼1.7 to ∼5.0 mg/m<sup>2</sup>). In contrast to the saponin-rich solutions, the synthetic surfactants introduced to the subphase easily removed the zein monolayer precompressed to π<sub>0</sub> = 30 mN/m, although the mechanism was different for the ionic (continuous displacement) and for the nonionic (orogenic-like). The zein layers at Si/water and their resistance to the detergent activity of SDS and QBS were assessed using NR, proving that the layers cast from acetic acid showed slightly higher mechanical strength than those cast from aqueous ethanol.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 30","pages":"20174–20183"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.5c02426","citationCount":"0","resultStr":"{\"title\":\"Zein Monolayers: Characterization and Interaction with (Bio)surfactants\",\"authors\":\"Kamil Wojciechowski*, Mario Campana, Agnieszka Samel and Emilia Baran, \",\"doi\":\"10.1021/acs.langmuir.5c02426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Zein is the main protein of corn seeds, which is often employed in food packaging and as a model of keratin. In this study, zein monolayers were deposited from nonconventional solvents: aqueous ethanol and acetic acid, on pure water that was later exchanged for 1% (bio)surfactant solutions: SDS, CTAB, Triton X-100, and the saponin-rich plant extracts of soapwort (<i>Saponaria officinalis</i> L.) and cowherb (<i>Saponaria vaccaria</i> [P. Mill.] Rauschert), as well as Quillaja bark saponins (QBS). The monolayers on pure water could be reversibly compressed up to ∼47 mN/m. On the basis of neutron reflectivity (NR) results, the liquid expanded–liquid expanded (LE-LE) transition observed at π ≈ 30 mN/m was assigned to an expulsion of the well-packed monolayer initially located on the air side of the interface, toward the aqueous side. The phase transition was accompanied by an increase in the layer thickness (from ∼1 to ∼6 nm) and the adsorbed amount (from ∼1.7 to ∼5.0 mg/m<sup>2</sup>). In contrast to the saponin-rich solutions, the synthetic surfactants introduced to the subphase easily removed the zein monolayer precompressed to π<sub>0</sub> = 30 mN/m, although the mechanism was different for the ionic (continuous displacement) and for the nonionic (orogenic-like). The zein layers at Si/water and their resistance to the detergent activity of SDS and QBS were assessed using NR, proving that the layers cast from acetic acid showed slightly higher mechanical strength than those cast from aqueous ethanol.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 30\",\"pages\":\"20174–20183\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.5c02426\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02426\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02426","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Zein Monolayers: Characterization and Interaction with (Bio)surfactants
Zein is the main protein of corn seeds, which is often employed in food packaging and as a model of keratin. In this study, zein monolayers were deposited from nonconventional solvents: aqueous ethanol and acetic acid, on pure water that was later exchanged for 1% (bio)surfactant solutions: SDS, CTAB, Triton X-100, and the saponin-rich plant extracts of soapwort (Saponaria officinalis L.) and cowherb (Saponaria vaccaria [P. Mill.] Rauschert), as well as Quillaja bark saponins (QBS). The monolayers on pure water could be reversibly compressed up to ∼47 mN/m. On the basis of neutron reflectivity (NR) results, the liquid expanded–liquid expanded (LE-LE) transition observed at π ≈ 30 mN/m was assigned to an expulsion of the well-packed monolayer initially located on the air side of the interface, toward the aqueous side. The phase transition was accompanied by an increase in the layer thickness (from ∼1 to ∼6 nm) and the adsorbed amount (from ∼1.7 to ∼5.0 mg/m2). In contrast to the saponin-rich solutions, the synthetic surfactants introduced to the subphase easily removed the zein monolayer precompressed to π0 = 30 mN/m, although the mechanism was different for the ionic (continuous displacement) and for the nonionic (orogenic-like). The zein layers at Si/water and their resistance to the detergent activity of SDS and QBS were assessed using NR, proving that the layers cast from acetic acid showed slightly higher mechanical strength than those cast from aqueous ethanol.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).