{"title":"设计学习干预研究:异质隐马尔可夫模型的可辨识性。","authors":"Ying Liu, Steven Culpepper","doi":"10.1017/psy.2025.10024","DOIUrl":null,"url":null,"abstract":"<p><p>Hidden Markov models (HMMs) are popular for modeling complex, longitudinal data. Existing identifiability theory for conventional HMMs assume emission probabilities are constant over time and the Markov chain governing transitions among the hidden states is irreducible, which are assumptions that may not be applicable in all educational and psychological research settings. We generalize existing conditions on homogeneous HMMs by considering heterogeneous HMMs with time-varying emission probabilities and the potential for absorbing states. Researchers are investigating a family of models known as restricted HMMs (RHMMs), which combine HMMs and restricted latent class models (RLCMs) to provide fine-grained classification of educationally and psychologically relevant attribute profiles over time. These RHMMs leverage the benefits of RLCMs and HMMs to understand changes in attribute profiles within longitudinal designs. The identifiability of RHMM parameters is a critical issue for ensuring successful applications and accurate statistical inference regarding factors that impact outcomes in intervention studies. We establish identifiability conditions for RHMMs. The new identifiability conditions for heterogeneous HMMs and RHMMs provide researchers insights for designing interventions. We discuss different types of assessment designs and the implications for practice. We present an application of a heterogeneous HMM to daily measures of positive and negative affect.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-26"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Learning Intervention Studies: Identifiability of Heterogeneous Hidden Markov Models.\",\"authors\":\"Ying Liu, Steven Culpepper\",\"doi\":\"10.1017/psy.2025.10024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hidden Markov models (HMMs) are popular for modeling complex, longitudinal data. Existing identifiability theory for conventional HMMs assume emission probabilities are constant over time and the Markov chain governing transitions among the hidden states is irreducible, which are assumptions that may not be applicable in all educational and psychological research settings. We generalize existing conditions on homogeneous HMMs by considering heterogeneous HMMs with time-varying emission probabilities and the potential for absorbing states. Researchers are investigating a family of models known as restricted HMMs (RHMMs), which combine HMMs and restricted latent class models (RLCMs) to provide fine-grained classification of educationally and psychologically relevant attribute profiles over time. These RHMMs leverage the benefits of RLCMs and HMMs to understand changes in attribute profiles within longitudinal designs. The identifiability of RHMM parameters is a critical issue for ensuring successful applications and accurate statistical inference regarding factors that impact outcomes in intervention studies. We establish identifiability conditions for RHMMs. The new identifiability conditions for heterogeneous HMMs and RHMMs provide researchers insights for designing interventions. We discuss different types of assessment designs and the implications for practice. We present an application of a heterogeneous HMM to daily measures of positive and negative affect.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\" \",\"pages\":\"1-26\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/psy.2025.10024\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.10024","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Designing Learning Intervention Studies: Identifiability of Heterogeneous Hidden Markov Models.
Hidden Markov models (HMMs) are popular for modeling complex, longitudinal data. Existing identifiability theory for conventional HMMs assume emission probabilities are constant over time and the Markov chain governing transitions among the hidden states is irreducible, which are assumptions that may not be applicable in all educational and psychological research settings. We generalize existing conditions on homogeneous HMMs by considering heterogeneous HMMs with time-varying emission probabilities and the potential for absorbing states. Researchers are investigating a family of models known as restricted HMMs (RHMMs), which combine HMMs and restricted latent class models (RLCMs) to provide fine-grained classification of educationally and psychologically relevant attribute profiles over time. These RHMMs leverage the benefits of RLCMs and HMMs to understand changes in attribute profiles within longitudinal designs. The identifiability of RHMM parameters is a critical issue for ensuring successful applications and accurate statistical inference regarding factors that impact outcomes in intervention studies. We establish identifiability conditions for RHMMs. The new identifiability conditions for heterogeneous HMMs and RHMMs provide researchers insights for designing interventions. We discuss different types of assessment designs and the implications for practice. We present an application of a heterogeneous HMM to daily measures of positive and negative affect.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.