Mackenzie E Turner, Jingru Che, Joseph T Leland, Delaney J Villarreal, Sahana Rajesh, Sugath Suravarapu, Kan N Hor, Matthew G Wiet, Bryce A Kerlin, Tai Yi, Cameron A Best, James W Reinhardt, Christopher K Breuer
{"title":"调节血小板介导的先天异物反应影响原位血管组织工程结果。","authors":"Mackenzie E Turner, Jingru Che, Joseph T Leland, Delaney J Villarreal, Sahana Rajesh, Sugath Suravarapu, Kan N Hor, Matthew G Wiet, Bryce A Kerlin, Tai Yi, Cameron A Best, James W Reinhardt, Christopher K Breuer","doi":"10.1038/s41536-025-00419-w","DOIUrl":null,"url":null,"abstract":"<p><p>The success of implanted tissue-engineered vascular grafts (TEVGs) relies on the coordinated inflammation and wound healing processes that simultaneously degrade the scaffold and guide the formation of a neovessel. Dysregulated responses can lead to aberrant remodeling (e.g., stenosis), impacting the long-term outcome and functionality of the TEVG. We developed a TEVG that, despite demonstrating growth capacity in the clinic, exhibited an unexpectedly high incidence of stenosis, or narrowing of the graft lumen. This study identified platelet-mediated immune signaling via the lysosomal trafficking regulator (Lyst) as a key driver of stenosis. Lyst mutations significantly impaired platelet dense granule exocytosis yet preserved alpha granule secretion and adhesion to the biomaterial. Uncontrolled platelet aggregation, potentiated by dense granule signaling, results in the formation of a mural thrombus that remodels into occlusive neotissue. Importantly, inhibiting sustained platelet aggregation using the P2Y12 antagonist, prasugrel, is a successful strategy for optimizing neotissue formation and improving overall TEVG performance.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"34"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modulating the platelet-mediated innate foreign body response to affect in situ vascular tissue engineering outcomes.\",\"authors\":\"Mackenzie E Turner, Jingru Che, Joseph T Leland, Delaney J Villarreal, Sahana Rajesh, Sugath Suravarapu, Kan N Hor, Matthew G Wiet, Bryce A Kerlin, Tai Yi, Cameron A Best, James W Reinhardt, Christopher K Breuer\",\"doi\":\"10.1038/s41536-025-00419-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The success of implanted tissue-engineered vascular grafts (TEVGs) relies on the coordinated inflammation and wound healing processes that simultaneously degrade the scaffold and guide the formation of a neovessel. Dysregulated responses can lead to aberrant remodeling (e.g., stenosis), impacting the long-term outcome and functionality of the TEVG. We developed a TEVG that, despite demonstrating growth capacity in the clinic, exhibited an unexpectedly high incidence of stenosis, or narrowing of the graft lumen. This study identified platelet-mediated immune signaling via the lysosomal trafficking regulator (Lyst) as a key driver of stenosis. Lyst mutations significantly impaired platelet dense granule exocytosis yet preserved alpha granule secretion and adhesion to the biomaterial. Uncontrolled platelet aggregation, potentiated by dense granule signaling, results in the formation of a mural thrombus that remodels into occlusive neotissue. Importantly, inhibiting sustained platelet aggregation using the P2Y12 antagonist, prasugrel, is a successful strategy for optimizing neotissue formation and improving overall TEVG performance.</p>\",\"PeriodicalId\":54236,\"journal\":{\"name\":\"npj Regenerative Medicine\",\"volume\":\"10 1\",\"pages\":\"34\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Regenerative Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41536-025-00419-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-025-00419-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Modulating the platelet-mediated innate foreign body response to affect in situ vascular tissue engineering outcomes.
The success of implanted tissue-engineered vascular grafts (TEVGs) relies on the coordinated inflammation and wound healing processes that simultaneously degrade the scaffold and guide the formation of a neovessel. Dysregulated responses can lead to aberrant remodeling (e.g., stenosis), impacting the long-term outcome and functionality of the TEVG. We developed a TEVG that, despite demonstrating growth capacity in the clinic, exhibited an unexpectedly high incidence of stenosis, or narrowing of the graft lumen. This study identified platelet-mediated immune signaling via the lysosomal trafficking regulator (Lyst) as a key driver of stenosis. Lyst mutations significantly impaired platelet dense granule exocytosis yet preserved alpha granule secretion and adhesion to the biomaterial. Uncontrolled platelet aggregation, potentiated by dense granule signaling, results in the formation of a mural thrombus that remodels into occlusive neotissue. Importantly, inhibiting sustained platelet aggregation using the P2Y12 antagonist, prasugrel, is a successful strategy for optimizing neotissue formation and improving overall TEVG performance.
期刊介绍:
Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.