Yi Hsuan Hou, Chia Ying Kuo, Tin Yau Edwin Lai, Ming Hong Xiao, Shin Lon Ho
{"title":"转录共抑制因子OsTPR1调控水稻分蘖和侧根发育。","authors":"Yi Hsuan Hou, Chia Ying Kuo, Tin Yau Edwin Lai, Ming Hong Xiao, Shin Lon Ho","doi":"10.1038/s41598-025-10224-6","DOIUrl":null,"url":null,"abstract":"<p><p>TOPLESS (TPL) and TOPLESS-Related (TPR) corepressors are key regulatory proteins that interact with a variety of transcription factors to form specific complexes, thereby modulating a wide range of signaling pathways and metabolic processes. This study explored the function of the rice TPR gene OsTPR1. Transgenic rice lines overexpressing OsTPR1 (OsTPR1-Ox) exhibited reduced lateral root density, whereas OsTPR1 RNA interference lines (OsTPR1-Ri) showed increased lateral root density. To gain further insight, these transgenic lines were crossed with the DR5::GUS auxin reporter line. In 7-day-old seedlings, lateral root formation occurred in the differentiation zone of seminal roots, with GUS staining prominently localized in the lateral root primordia of the DR5::GUS/OsTPR1-Ri line. Similar results were observed in 45-day-old seedlings, where the DR5::GUS/OsTPR1-Ri line exhibited stronger GUS staining and a higher number of lateral roots in the crown root differentiation zones. In contrast, the DR5::GUS/OsTPR1-Ox line showed weaker GUS signals and fewer lateral roots. Additionally, the expression levels of several auxin efflux transporter genes encoding PIN-FORMED (PIN) proteins, including OsPIN1a, OsPIN1b, OsPIN1c, OsPIN2, and OsPIN5a, were increased in the OsTPR1-Ri line but decreased in the OsTPR1-Ox line. These results suggest that OsTPR1 also modulates the expression of multiple OsPIN genes, thereby potentially influencing auxin responses and lateral root development. Beyond root development, OsTPR1 overexpression led to a significant increase in tiller angle and a delay in flowering time, whereas OsTPR1-Ri plants exhibited earlier flowering. These findings indicate that OsTPR1 acts as a negative regulator of the auxin response, with its overexpression leading to reduced auxin sensitivity and altered plant architecture. Our results show that OsTPR1 modulates lateral root development, tiller angle, and flowering time, contributing to the coordinated growth and development in rice.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26430"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280221/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptional corepressor OsTPR1 regulates tillering and lateral root development in rice.\",\"authors\":\"Yi Hsuan Hou, Chia Ying Kuo, Tin Yau Edwin Lai, Ming Hong Xiao, Shin Lon Ho\",\"doi\":\"10.1038/s41598-025-10224-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>TOPLESS (TPL) and TOPLESS-Related (TPR) corepressors are key regulatory proteins that interact with a variety of transcription factors to form specific complexes, thereby modulating a wide range of signaling pathways and metabolic processes. This study explored the function of the rice TPR gene OsTPR1. Transgenic rice lines overexpressing OsTPR1 (OsTPR1-Ox) exhibited reduced lateral root density, whereas OsTPR1 RNA interference lines (OsTPR1-Ri) showed increased lateral root density. To gain further insight, these transgenic lines were crossed with the DR5::GUS auxin reporter line. In 7-day-old seedlings, lateral root formation occurred in the differentiation zone of seminal roots, with GUS staining prominently localized in the lateral root primordia of the DR5::GUS/OsTPR1-Ri line. Similar results were observed in 45-day-old seedlings, where the DR5::GUS/OsTPR1-Ri line exhibited stronger GUS staining and a higher number of lateral roots in the crown root differentiation zones. In contrast, the DR5::GUS/OsTPR1-Ox line showed weaker GUS signals and fewer lateral roots. Additionally, the expression levels of several auxin efflux transporter genes encoding PIN-FORMED (PIN) proteins, including OsPIN1a, OsPIN1b, OsPIN1c, OsPIN2, and OsPIN5a, were increased in the OsTPR1-Ri line but decreased in the OsTPR1-Ox line. These results suggest that OsTPR1 also modulates the expression of multiple OsPIN genes, thereby potentially influencing auxin responses and lateral root development. Beyond root development, OsTPR1 overexpression led to a significant increase in tiller angle and a delay in flowering time, whereas OsTPR1-Ri plants exhibited earlier flowering. These findings indicate that OsTPR1 acts as a negative regulator of the auxin response, with its overexpression leading to reduced auxin sensitivity and altered plant architecture. Our results show that OsTPR1 modulates lateral root development, tiller angle, and flowering time, contributing to the coordinated growth and development in rice.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26430\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280221/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-10224-6\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-10224-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
toppless (TPL)和toppless相关(TPR)共阻遏子是与多种转录因子相互作用形成特异性复合物的关键调控蛋白,从而调节广泛的信号通路和代谢过程。本研究探讨了水稻TPR基因OsTPR1的功能。过表达OsTPR1的转基因水稻株系(OsTPR1- ox)侧根密度降低,而过表达OsTPR1 RNA干扰株系(OsTPR1- ri)侧根密度增加。为了进一步深入了解,这些转基因系与DR5::GUS生长素报告系杂交。在7 d龄的幼苗中,侧根形成发生在种子根分化区,在DR5::GUS/OsTPR1-Ri系的侧根原基中GUS染色明显。在45 d的幼苗中也观察到类似的结果,DR5::GUS/OsTPR1-Ri系在冠根分化区表现出更强的GUS染色和更多的侧根。而DR5::GUS/OsTPR1-Ox系GUS信号较弱,侧根较少。此外,编码PIN- formed (PIN)蛋白的几种生长素外排转运基因,包括OsPIN1a、OsPIN1b、OsPIN1c、OsPIN2和OsPIN5a,在OsTPR1-Ri系中表达水平升高,而在OsTPR1-Ox系中表达水平降低。这些结果表明,OsTPR1还可以调节多个OsPIN基因的表达,从而可能影响生长素的反应和侧根的发育。在根系发育之外,OsTPR1过表达导致分蘖角显著增加和开花时间延迟,而OsTPR1- ri植株开花时间提前。这些发现表明,OsTPR1作为生长素反应的负调节因子,其过表达导致生长素敏感性降低和植物结构改变。结果表明,OsTPR1调控水稻侧根发育、分蘖角和开花时间,对水稻的生长发育起协调作用。
Transcriptional corepressor OsTPR1 regulates tillering and lateral root development in rice.
TOPLESS (TPL) and TOPLESS-Related (TPR) corepressors are key regulatory proteins that interact with a variety of transcription factors to form specific complexes, thereby modulating a wide range of signaling pathways and metabolic processes. This study explored the function of the rice TPR gene OsTPR1. Transgenic rice lines overexpressing OsTPR1 (OsTPR1-Ox) exhibited reduced lateral root density, whereas OsTPR1 RNA interference lines (OsTPR1-Ri) showed increased lateral root density. To gain further insight, these transgenic lines were crossed with the DR5::GUS auxin reporter line. In 7-day-old seedlings, lateral root formation occurred in the differentiation zone of seminal roots, with GUS staining prominently localized in the lateral root primordia of the DR5::GUS/OsTPR1-Ri line. Similar results were observed in 45-day-old seedlings, where the DR5::GUS/OsTPR1-Ri line exhibited stronger GUS staining and a higher number of lateral roots in the crown root differentiation zones. In contrast, the DR5::GUS/OsTPR1-Ox line showed weaker GUS signals and fewer lateral roots. Additionally, the expression levels of several auxin efflux transporter genes encoding PIN-FORMED (PIN) proteins, including OsPIN1a, OsPIN1b, OsPIN1c, OsPIN2, and OsPIN5a, were increased in the OsTPR1-Ri line but decreased in the OsTPR1-Ox line. These results suggest that OsTPR1 also modulates the expression of multiple OsPIN genes, thereby potentially influencing auxin responses and lateral root development. Beyond root development, OsTPR1 overexpression led to a significant increase in tiller angle and a delay in flowering time, whereas OsTPR1-Ri plants exhibited earlier flowering. These findings indicate that OsTPR1 acts as a negative regulator of the auxin response, with its overexpression leading to reduced auxin sensitivity and altered plant architecture. Our results show that OsTPR1 modulates lateral root development, tiller angle, and flowering time, contributing to the coordinated growth and development in rice.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.