{"title":"壳聚糖基粘土纳米复合材料增强的轻质保温烧制粘土砖,用于可持续建筑。","authors":"M Abdelhamid Shahat, Wafaa Soliman","doi":"10.1038/s41598-025-11790-5","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the enhancement of thermal insulation in fired clay bricks through the incorporation of chitosan (CS) as a biopolymeric dopant. A series of composite samples were prepared with CS concentrations of 0%, 2%, 4%, 6%, and 8%, and their structural, mechanical, and thermophysical qualities were comprehensively investigated. Analytical techniques including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA) were employed to assess compositional and morphological changes. The introduction of CS led to increased XRD peak intensity, indicating improved crystalline organization, while FTIR spectra revealed the presence of CS-associated functional groups. SEM micrographs confirmed the development of a more porous microstructure, and TGA data demonstrated enhanced thermal stability. The CS-modified bricks exhibited an increase in porous topography (33.2-47.9%), a reduction in bulk density (i.e., 1.84-1.29 g/cm<sup>3</sup>), and improved compressive strength (from 0.768 to 1.232 MPa). It is noteworthy that the clay@CS (6%) mix encountered a low thermal diffusivity in addition to the lowest thermal conductivity value (i.e., 0.3418-0.2334 W/mk). The findings show that adding more CS to composite bricks significantly improves their thermal insulation qualities (i.e., 0.314-0.213 mm<sup>2</sup>/S). These outcomes underscore the potential of CS as a sustainable additive for improving the performance of clay-based construction materials, offering promising implications for energy-efficient and environmentally conscious building applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26528"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280097/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lightweight thermally insulating fired clay bricks enhanced with chitosan-based clay nanocomposites for sustainable construction.\",\"authors\":\"M Abdelhamid Shahat, Wafaa Soliman\",\"doi\":\"10.1038/s41598-025-11790-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the enhancement of thermal insulation in fired clay bricks through the incorporation of chitosan (CS) as a biopolymeric dopant. A series of composite samples were prepared with CS concentrations of 0%, 2%, 4%, 6%, and 8%, and their structural, mechanical, and thermophysical qualities were comprehensively investigated. Analytical techniques including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA) were employed to assess compositional and morphological changes. The introduction of CS led to increased XRD peak intensity, indicating improved crystalline organization, while FTIR spectra revealed the presence of CS-associated functional groups. SEM micrographs confirmed the development of a more porous microstructure, and TGA data demonstrated enhanced thermal stability. The CS-modified bricks exhibited an increase in porous topography (33.2-47.9%), a reduction in bulk density (i.e., 1.84-1.29 g/cm<sup>3</sup>), and improved compressive strength (from 0.768 to 1.232 MPa). It is noteworthy that the clay@CS (6%) mix encountered a low thermal diffusivity in addition to the lowest thermal conductivity value (i.e., 0.3418-0.2334 W/mk). The findings show that adding more CS to composite bricks significantly improves their thermal insulation qualities (i.e., 0.314-0.213 mm<sup>2</sup>/S). These outcomes underscore the potential of CS as a sustainable additive for improving the performance of clay-based construction materials, offering promising implications for energy-efficient and environmentally conscious building applications.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26528\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-11790-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-11790-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Lightweight thermally insulating fired clay bricks enhanced with chitosan-based clay nanocomposites for sustainable construction.
This study explores the enhancement of thermal insulation in fired clay bricks through the incorporation of chitosan (CS) as a biopolymeric dopant. A series of composite samples were prepared with CS concentrations of 0%, 2%, 4%, 6%, and 8%, and their structural, mechanical, and thermophysical qualities were comprehensively investigated. Analytical techniques including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA) were employed to assess compositional and morphological changes. The introduction of CS led to increased XRD peak intensity, indicating improved crystalline organization, while FTIR spectra revealed the presence of CS-associated functional groups. SEM micrographs confirmed the development of a more porous microstructure, and TGA data demonstrated enhanced thermal stability. The CS-modified bricks exhibited an increase in porous topography (33.2-47.9%), a reduction in bulk density (i.e., 1.84-1.29 g/cm3), and improved compressive strength (from 0.768 to 1.232 MPa). It is noteworthy that the clay@CS (6%) mix encountered a low thermal diffusivity in addition to the lowest thermal conductivity value (i.e., 0.3418-0.2334 W/mk). The findings show that adding more CS to composite bricks significantly improves their thermal insulation qualities (i.e., 0.314-0.213 mm2/S). These outcomes underscore the potential of CS as a sustainable additive for improving the performance of clay-based construction materials, offering promising implications for energy-efficient and environmentally conscious building applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.