{"title":"生成式人工智能对中国工科学生学习和表现的教育影响。","authors":"Lei Fan, Kunyang Deng, Fangxue Liu","doi":"10.1038/s41598-025-06930-w","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of generative artificial intelligence (AI), its potential applications in higher education have attracted significant attention. This study investigated how 148 students from diverse engineering disciplines and regions across China used generative AI, focusing on its impact on their learning experience and the opportunities and challenges it poses in engineering education. Based on the surveyed data, we explored four key areas: the frequency and application scenarios of AI use among engineering students, its impact on students' learning and performance, commonly encountered challenges in using generative AI, and future prospects for its adoption in engineering education. The results showed that more than half of the participants reported a positive impact of generative AI on their learning efficiency, initiative, and creativity, with nearly half believing it also enhanced their independent thinking. However, despite acknowledging improved study efficiency, many felt their actual academic performance remained largely unchanged and expressed concerns about the accuracy and domain-specific reliability of generative AI. Our findings provide a first-hand insight into the current benefits and challenges generative AI brings to students, particularly Chinese engineering students, while offering several recommendations-especially from the students' perspective-for effectively integrating generative AI into engineering education.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26521"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280127/pdf/","citationCount":"0","resultStr":"{\"title\":\"Educational impacts of generative artificial intelligence on learning and performance of engineering students in China.\",\"authors\":\"Lei Fan, Kunyang Deng, Fangxue Liu\",\"doi\":\"10.1038/s41598-025-06930-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid advancement of generative artificial intelligence (AI), its potential applications in higher education have attracted significant attention. This study investigated how 148 students from diverse engineering disciplines and regions across China used generative AI, focusing on its impact on their learning experience and the opportunities and challenges it poses in engineering education. Based on the surveyed data, we explored four key areas: the frequency and application scenarios of AI use among engineering students, its impact on students' learning and performance, commonly encountered challenges in using generative AI, and future prospects for its adoption in engineering education. The results showed that more than half of the participants reported a positive impact of generative AI on their learning efficiency, initiative, and creativity, with nearly half believing it also enhanced their independent thinking. However, despite acknowledging improved study efficiency, many felt their actual academic performance remained largely unchanged and expressed concerns about the accuracy and domain-specific reliability of generative AI. Our findings provide a first-hand insight into the current benefits and challenges generative AI brings to students, particularly Chinese engineering students, while offering several recommendations-especially from the students' perspective-for effectively integrating generative AI into engineering education.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26521\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12280127/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-06930-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-06930-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Educational impacts of generative artificial intelligence on learning and performance of engineering students in China.
With the rapid advancement of generative artificial intelligence (AI), its potential applications in higher education have attracted significant attention. This study investigated how 148 students from diverse engineering disciplines and regions across China used generative AI, focusing on its impact on their learning experience and the opportunities and challenges it poses in engineering education. Based on the surveyed data, we explored four key areas: the frequency and application scenarios of AI use among engineering students, its impact on students' learning and performance, commonly encountered challenges in using generative AI, and future prospects for its adoption in engineering education. The results showed that more than half of the participants reported a positive impact of generative AI on their learning efficiency, initiative, and creativity, with nearly half believing it also enhanced their independent thinking. However, despite acknowledging improved study efficiency, many felt their actual academic performance remained largely unchanged and expressed concerns about the accuracy and domain-specific reliability of generative AI. Our findings provide a first-hand insight into the current benefits and challenges generative AI brings to students, particularly Chinese engineering students, while offering several recommendations-especially from the students' perspective-for effectively integrating generative AI into engineering education.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.