应用智能技术预测土壤侵蚀模式。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Rana Muhammad Adnan Ikram, Mo Wang, Hossein Moayedi, Atefeh Ahmadi Dehrashid, Shiva Gharibi, Jing-Cheng Han
{"title":"应用智能技术预测土壤侵蚀模式。","authors":"Rana Muhammad Adnan Ikram, Mo Wang, Hossein Moayedi, Atefeh Ahmadi Dehrashid, Shiva Gharibi, Jing-Cheng Han","doi":"10.1038/s41598-025-12125-0","DOIUrl":null,"url":null,"abstract":"<p><p>Soil is a critical natural resource, and accurate erosion susceptibility assessment is vital for the optimal management and development of soil resources. Erosion susceptibility assessment is necessary for long-term conservation plans, but the process can be expensive and time-consuming over large areas. It is imperative to examine the impact of water-induced erosion on cultivated lands, as it can cause significant damage. This study evaluates the effectiveness of four data-driven approaches (biogeography-based optimization, earthworm optimization algorithm, symbiotic organisms search, and whale optimization algorithm) combined with artificial neural network models for the assessment of erosion susceptibility. The examined criteria include 14 geographic and environmental criteria, and the data used in a ratio of 70 to 30 for training and testing operations. And its results were measured by AUC values. The evaluation of AUC accuracy indices revealed compelling results. Specifically, in the case of SOS-MLP, the highest AUC values were observed, reaching 0.9973 for test data and 0.9296 for train data. Conversely, for WOA-MLP, the AUC values obtained were slightly lower but still notable, registering at 0.9809 for test data and 0.959 for train data. These values were also calculated for BBO-MLP (0.999 and 0.9327) and EWA-MLP (0.9304 and 0.9296) in the training and testing phases, respectively. Results showed that all four methods could successfully evaluate erosion susceptibility according to AUC values greater than 0.92, especially the BBO-MLP with the highest AUC values. Therefore, the findings of this study have shown that the combined optimization algorithms and Machine Learning used in this research have a suitable ability to optimize the artificial neural network and are very useful for identifying areas sensitive to erosion.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"26479"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279979/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of smart technologies for predicting soil erosion patterns.\",\"authors\":\"Rana Muhammad Adnan Ikram, Mo Wang, Hossein Moayedi, Atefeh Ahmadi Dehrashid, Shiva Gharibi, Jing-Cheng Han\",\"doi\":\"10.1038/s41598-025-12125-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil is a critical natural resource, and accurate erosion susceptibility assessment is vital for the optimal management and development of soil resources. Erosion susceptibility assessment is necessary for long-term conservation plans, but the process can be expensive and time-consuming over large areas. It is imperative to examine the impact of water-induced erosion on cultivated lands, as it can cause significant damage. This study evaluates the effectiveness of four data-driven approaches (biogeography-based optimization, earthworm optimization algorithm, symbiotic organisms search, and whale optimization algorithm) combined with artificial neural network models for the assessment of erosion susceptibility. The examined criteria include 14 geographic and environmental criteria, and the data used in a ratio of 70 to 30 for training and testing operations. And its results were measured by AUC values. The evaluation of AUC accuracy indices revealed compelling results. Specifically, in the case of SOS-MLP, the highest AUC values were observed, reaching 0.9973 for test data and 0.9296 for train data. Conversely, for WOA-MLP, the AUC values obtained were slightly lower but still notable, registering at 0.9809 for test data and 0.959 for train data. These values were also calculated for BBO-MLP (0.999 and 0.9327) and EWA-MLP (0.9304 and 0.9296) in the training and testing phases, respectively. Results showed that all four methods could successfully evaluate erosion susceptibility according to AUC values greater than 0.92, especially the BBO-MLP with the highest AUC values. Therefore, the findings of this study have shown that the combined optimization algorithms and Machine Learning used in this research have a suitable ability to optimize the artificial neural network and are very useful for identifying areas sensitive to erosion.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"26479\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279979/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-12125-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-12125-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

土壤是一种重要的自然资源,准确的侵蚀敏感性评价对土壤资源的优化管理和开发至关重要。侵蚀敏感性评估对于长期保护计划是必要的,但在大面积地区进行评估既昂贵又耗时。研究水土流失对耕地的影响是必要的,因为它可能造成重大损害。本研究评估了四种数据驱动的方法(基于生物地理学的优化算法、蚯蚓优化算法、共生生物搜索算法和鲸鱼优化算法)与人工神经网络模型相结合用于侵蚀敏感性评估的有效性。审查的标准包括14项地理和环境标准,以及以70比30的比例用于培训和测试业务的数据。并用AUC值来衡量其结果。AUC准确度指标的评估结果令人信服。其中,SOS-MLP的AUC值最高,测试数据达到0.9973,列车数据达到0.9296。相反,对于WOA-MLP,得到的AUC值略低,但仍然值得注意,测试数据为0.9809,训练数据为0.959。在训练和测试阶段,分别计算了BBO-MLP(0.999和0.9327)和EWA-MLP(0.9304和0.9296)的这些值。结果表明,4种方法均能在AUC值大于0.92的条件下成功评价土壤侵蚀敏感性,其中BBO-MLP的AUC值最高。因此,本研究结果表明,本研究中使用的组合优化算法和机器学习具有合适的优化人工神经网络的能力,对于识别侵蚀敏感区域非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of smart technologies for predicting soil erosion patterns.

Soil is a critical natural resource, and accurate erosion susceptibility assessment is vital for the optimal management and development of soil resources. Erosion susceptibility assessment is necessary for long-term conservation plans, but the process can be expensive and time-consuming over large areas. It is imperative to examine the impact of water-induced erosion on cultivated lands, as it can cause significant damage. This study evaluates the effectiveness of four data-driven approaches (biogeography-based optimization, earthworm optimization algorithm, symbiotic organisms search, and whale optimization algorithm) combined with artificial neural network models for the assessment of erosion susceptibility. The examined criteria include 14 geographic and environmental criteria, and the data used in a ratio of 70 to 30 for training and testing operations. And its results were measured by AUC values. The evaluation of AUC accuracy indices revealed compelling results. Specifically, in the case of SOS-MLP, the highest AUC values were observed, reaching 0.9973 for test data and 0.9296 for train data. Conversely, for WOA-MLP, the AUC values obtained were slightly lower but still notable, registering at 0.9809 for test data and 0.959 for train data. These values were also calculated for BBO-MLP (0.999 and 0.9327) and EWA-MLP (0.9304 and 0.9296) in the training and testing phases, respectively. Results showed that all four methods could successfully evaluate erosion susceptibility according to AUC values greater than 0.92, especially the BBO-MLP with the highest AUC values. Therefore, the findings of this study have shown that the combined optimization algorithms and Machine Learning used in this research have a suitable ability to optimize the artificial neural network and are very useful for identifying areas sensitive to erosion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信