全膝关节置换术中外侧副韧带和内侧副韧带的有限元模拟。

IF 1.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Vida Shams Esfand Abadi, Soroush Sadeghnejad, Mostafa Rostami, Farzam Farahmand
{"title":"全膝关节置换术中外侧副韧带和内侧副韧带的有限元模拟。","authors":"Vida Shams Esfand Abadi, Soroush Sadeghnejad, Mostafa Rostami, Farzam Farahmand","doi":"10.1177/09544119251350787","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to model the lateral collateral ligament (LCL) and medial collateral ligament (MCL) around the artificial knee joint in such a way that the virtual ligaments have the same behavior as the native ligaments around the artificial knee joint in reality. This study provides more accuracy in knee biomechanical simulation by introducing a nonlinear model for MCL and LCL ligaments and improved the modeling of ligaments by assigning nonlinear elastic behavior through achieving the force-displacement relationship in nonlinear form and assigned this relationship to the uniaxial connectors that represent the ligament bundles. The results showed that the virtual ligaments can only bear tensile loads and have the same behavior as the native ligaments that surround the artificial knee joint. In addition, the results obtained for tibiofemoral contact forces and ligament forces have been compared with the reference data and have shown significant agreement. This model serves as a biomechanical platform for simulating soft tissue balancing strategies in TKA. While the current study does not implement specific surgical techniques, the validated ligament representation enables future simulations involving clinical interventions such as ligament release, alignment adjustments, and gap balancing procedures and helps the surgeon to evaluate the result of treatment plan on the knee joint before the surgery.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"636-643"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FEM modeling of lateral collateral & medial collateral ligaments for use in total knee arthroplasty surgery simulation.\",\"authors\":\"Vida Shams Esfand Abadi, Soroush Sadeghnejad, Mostafa Rostami, Farzam Farahmand\",\"doi\":\"10.1177/09544119251350787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study is to model the lateral collateral ligament (LCL) and medial collateral ligament (MCL) around the artificial knee joint in such a way that the virtual ligaments have the same behavior as the native ligaments around the artificial knee joint in reality. This study provides more accuracy in knee biomechanical simulation by introducing a nonlinear model for MCL and LCL ligaments and improved the modeling of ligaments by assigning nonlinear elastic behavior through achieving the force-displacement relationship in nonlinear form and assigned this relationship to the uniaxial connectors that represent the ligament bundles. The results showed that the virtual ligaments can only bear tensile loads and have the same behavior as the native ligaments that surround the artificial knee joint. In addition, the results obtained for tibiofemoral contact forces and ligament forces have been compared with the reference data and have shown significant agreement. This model serves as a biomechanical platform for simulating soft tissue balancing strategies in TKA. While the current study does not implement specific surgical techniques, the validated ligament representation enables future simulations involving clinical interventions such as ligament release, alignment adjustments, and gap balancing procedures and helps the surgeon to evaluate the result of treatment plan on the knee joint before the surgery.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"636-643\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251350787\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251350787","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是模拟人工膝关节周围的外侧副韧带(LCL)和内侧副韧带(MCL),使虚拟韧带与现实中人工膝关节周围的天然韧带具有相同的行为。本研究通过引入MCL和LCL韧带的非线性模型,提高了膝关节生物力学模拟的准确性,并通过实现非线性形式的力-位移关系,将非线性弹性行为分配给代表韧带束的单轴连接件,从而改进了韧带的建模。结果表明,虚拟韧带只能承受拉伸载荷,并且与环绕人工膝关节的天然韧带具有相同的行为。此外,将所得的胫股接触力和韧带力与参考数据进行了比较,结果显示出显著的一致性。该模型可作为模拟TKA中软组织平衡策略的生物力学平台。虽然目前的研究没有实施具体的手术技术,但经过验证的韧带表示可以在未来进行模拟,包括临床干预,如韧带释放、对齐调整和间隙平衡程序,并帮助外科医生在手术前评估膝关节治疗计划的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FEM modeling of lateral collateral & medial collateral ligaments for use in total knee arthroplasty surgery simulation.

The objective of this study is to model the lateral collateral ligament (LCL) and medial collateral ligament (MCL) around the artificial knee joint in such a way that the virtual ligaments have the same behavior as the native ligaments around the artificial knee joint in reality. This study provides more accuracy in knee biomechanical simulation by introducing a nonlinear model for MCL and LCL ligaments and improved the modeling of ligaments by assigning nonlinear elastic behavior through achieving the force-displacement relationship in nonlinear form and assigned this relationship to the uniaxial connectors that represent the ligament bundles. The results showed that the virtual ligaments can only bear tensile loads and have the same behavior as the native ligaments that surround the artificial knee joint. In addition, the results obtained for tibiofemoral contact forces and ligament forces have been compared with the reference data and have shown significant agreement. This model serves as a biomechanical platform for simulating soft tissue balancing strategies in TKA. While the current study does not implement specific surgical techniques, the validated ligament representation enables future simulations involving clinical interventions such as ligament release, alignment adjustments, and gap balancing procedures and helps the surgeon to evaluate the result of treatment plan on the knee joint before the surgery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信