Bianca Menchicchi, Andre C Stiel, Mattia Nieddu, J P Fuenzalida-Werner
{"title":"荧光蛋白:材料科学中从细胞到极端环境的旅程。","authors":"Bianca Menchicchi, Andre C Stiel, Mattia Nieddu, J P Fuenzalida-Werner","doi":"10.1111/php.70011","DOIUrl":null,"url":null,"abstract":"<p><p>This review presents the progression from the use of fluorescent proteins (FPs) and chromoproteins as bioimaging labels and sensors to the strategic engineering of their properties for robust functionality in synthetic and non-biological environments. Specifically, engineered variants of the small ultra-red fluorescent protein (smURFP) were developed and optimized for optoacoustic imaging through structure-guided mutagenesis. Reversibly switchable genetically encoded indicators were also created to enhance bioimaging capabilities. To extend the applicability of such proteins to material science and enable their function in everyday applications-such as environmental sensors, encoders, or color components in textiles and electronics-their inherent stability limitations were addressed. For this purpose, supramolecular stabilization strategies, including genetically encoded macro-oligomerization techniques, were explored. These methods effectively enhanced the resilience of FPs under chemically challenging conditions, without compromising their photophysical properties. Finally, the exploration of circularly polarized luminescence (CPL) from FPs is discussed, and their potential as CPL emitters suitable for sustainable photonic applications is identified. Overall, the transformative potential of engineered FPs as essential components for applications beyond bioimaging is emphasized.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescent proteins: A journey from the cell to extreme environments in material science.\",\"authors\":\"Bianca Menchicchi, Andre C Stiel, Mattia Nieddu, J P Fuenzalida-Werner\",\"doi\":\"10.1111/php.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review presents the progression from the use of fluorescent proteins (FPs) and chromoproteins as bioimaging labels and sensors to the strategic engineering of their properties for robust functionality in synthetic and non-biological environments. Specifically, engineered variants of the small ultra-red fluorescent protein (smURFP) were developed and optimized for optoacoustic imaging through structure-guided mutagenesis. Reversibly switchable genetically encoded indicators were also created to enhance bioimaging capabilities. To extend the applicability of such proteins to material science and enable their function in everyday applications-such as environmental sensors, encoders, or color components in textiles and electronics-their inherent stability limitations were addressed. For this purpose, supramolecular stabilization strategies, including genetically encoded macro-oligomerization techniques, were explored. These methods effectively enhanced the resilience of FPs under chemically challenging conditions, without compromising their photophysical properties. Finally, the exploration of circularly polarized luminescence (CPL) from FPs is discussed, and their potential as CPL emitters suitable for sustainable photonic applications is identified. Overall, the transformative potential of engineered FPs as essential components for applications beyond bioimaging is emphasized.</p>\",\"PeriodicalId\":20133,\"journal\":{\"name\":\"Photochemistry and Photobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemistry and Photobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/php.70011\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.70011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fluorescent proteins: A journey from the cell to extreme environments in material science.
This review presents the progression from the use of fluorescent proteins (FPs) and chromoproteins as bioimaging labels and sensors to the strategic engineering of their properties for robust functionality in synthetic and non-biological environments. Specifically, engineered variants of the small ultra-red fluorescent protein (smURFP) were developed and optimized for optoacoustic imaging through structure-guided mutagenesis. Reversibly switchable genetically encoded indicators were also created to enhance bioimaging capabilities. To extend the applicability of such proteins to material science and enable their function in everyday applications-such as environmental sensors, encoders, or color components in textiles and electronics-their inherent stability limitations were addressed. For this purpose, supramolecular stabilization strategies, including genetically encoded macro-oligomerization techniques, were explored. These methods effectively enhanced the resilience of FPs under chemically challenging conditions, without compromising their photophysical properties. Finally, the exploration of circularly polarized luminescence (CPL) from FPs is discussed, and their potential as CPL emitters suitable for sustainable photonic applications is identified. Overall, the transformative potential of engineered FPs as essential components for applications beyond bioimaging is emphasized.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.