Yi Rou Bah, Kairi Baba, Dayang Nurul Asyiqin Binte Mustafa, Satoshi Watanabe, Aya K Takeda, Tomoya Yamashita, Kazuyuki Kasahara
{"title":"富含拟杆菌和普雷沃氏菌的肠道微生物群与代谢风险相关。","authors":"Yi Rou Bah, Kairi Baba, Dayang Nurul Asyiqin Binte Mustafa, Satoshi Watanabe, Aya K Takeda, Tomoya Yamashita, Kazuyuki Kasahara","doi":"10.1186/s13099-025-00730-3","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome plays a critical role in human health through its influence on numerous physiological functions such as metabolism and immunity, with disruptions in microbial communities increasingly linked to metabolic disorders. In a large-scale cohort study in Japan, we investigated the association between gut microbiome profiles and metabolic health. Using 16S rRNA gene sequencing, four-enterotype clustering revealed that the Bacteroides 2 (B2) enterotype was associated with lower alpha-diversity and increased risk of metabolic diseases, particularly obesity (OR = 1.51) and hypertension (OR = 1.49). Refined seven-enterotype clustering further stratified the Ruminococcus, Prevotella, and Bacteroides enterotypes into distinct subtypes, uncovering a novel high-risk Prevotella 2 (P2) enterotype associated with nearly two-fold increased risk of obesity and diabetes mellitus. The B2 and P2 enterotypes were characterized by reduced abundance of beneficial short-chain fatty acid (SCFA) producers (Faecalibacterium, Anaerostipes) and enrichment of opportunistic pathogens (Fusobacterium and Veillonella for B2, Megamonas and Megasphaera for P2). Microbial metabolic influence network analysis revealed enterotype-specific interaction patterns, with R1, R2, and P1 enterotypes demonstrating cooperative production of SCFAs and other metabolites, while B enterotypes displayed synergy in the production of a range of sugar compounds. These findings underscore the utility of refined enterotype clustering as a powerful tool to reveal previously unrecognized gut microbial patterns linked to metabolic risk. By identifying B2 and the newly characterized P2 enterotypes as high-risk microbial profiles, this study opens new avenues for microbiome-based stratification and early intervention in metabolic disease management.</p>","PeriodicalId":12833,"journal":{"name":"Gut Pathogens","volume":"17 1","pages":"55"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281872/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bacteroides- and Prevotella-enriched gut microbial clusters associate with metabolic risks.\",\"authors\":\"Yi Rou Bah, Kairi Baba, Dayang Nurul Asyiqin Binte Mustafa, Satoshi Watanabe, Aya K Takeda, Tomoya Yamashita, Kazuyuki Kasahara\",\"doi\":\"10.1186/s13099-025-00730-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gut microbiome plays a critical role in human health through its influence on numerous physiological functions such as metabolism and immunity, with disruptions in microbial communities increasingly linked to metabolic disorders. In a large-scale cohort study in Japan, we investigated the association between gut microbiome profiles and metabolic health. Using 16S rRNA gene sequencing, four-enterotype clustering revealed that the Bacteroides 2 (B2) enterotype was associated with lower alpha-diversity and increased risk of metabolic diseases, particularly obesity (OR = 1.51) and hypertension (OR = 1.49). Refined seven-enterotype clustering further stratified the Ruminococcus, Prevotella, and Bacteroides enterotypes into distinct subtypes, uncovering a novel high-risk Prevotella 2 (P2) enterotype associated with nearly two-fold increased risk of obesity and diabetes mellitus. The B2 and P2 enterotypes were characterized by reduced abundance of beneficial short-chain fatty acid (SCFA) producers (Faecalibacterium, Anaerostipes) and enrichment of opportunistic pathogens (Fusobacterium and Veillonella for B2, Megamonas and Megasphaera for P2). Microbial metabolic influence network analysis revealed enterotype-specific interaction patterns, with R1, R2, and P1 enterotypes demonstrating cooperative production of SCFAs and other metabolites, while B enterotypes displayed synergy in the production of a range of sugar compounds. These findings underscore the utility of refined enterotype clustering as a powerful tool to reveal previously unrecognized gut microbial patterns linked to metabolic risk. By identifying B2 and the newly characterized P2 enterotypes as high-risk microbial profiles, this study opens new avenues for microbiome-based stratification and early intervention in metabolic disease management.</p>\",\"PeriodicalId\":12833,\"journal\":{\"name\":\"Gut Pathogens\",\"volume\":\"17 1\",\"pages\":\"55\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281872/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13099-025-00730-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13099-025-00730-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Bacteroides- and Prevotella-enriched gut microbial clusters associate with metabolic risks.
The gut microbiome plays a critical role in human health through its influence on numerous physiological functions such as metabolism and immunity, with disruptions in microbial communities increasingly linked to metabolic disorders. In a large-scale cohort study in Japan, we investigated the association between gut microbiome profiles and metabolic health. Using 16S rRNA gene sequencing, four-enterotype clustering revealed that the Bacteroides 2 (B2) enterotype was associated with lower alpha-diversity and increased risk of metabolic diseases, particularly obesity (OR = 1.51) and hypertension (OR = 1.49). Refined seven-enterotype clustering further stratified the Ruminococcus, Prevotella, and Bacteroides enterotypes into distinct subtypes, uncovering a novel high-risk Prevotella 2 (P2) enterotype associated with nearly two-fold increased risk of obesity and diabetes mellitus. The B2 and P2 enterotypes were characterized by reduced abundance of beneficial short-chain fatty acid (SCFA) producers (Faecalibacterium, Anaerostipes) and enrichment of opportunistic pathogens (Fusobacterium and Veillonella for B2, Megamonas and Megasphaera for P2). Microbial metabolic influence network analysis revealed enterotype-specific interaction patterns, with R1, R2, and P1 enterotypes demonstrating cooperative production of SCFAs and other metabolites, while B enterotypes displayed synergy in the production of a range of sugar compounds. These findings underscore the utility of refined enterotype clustering as a powerful tool to reveal previously unrecognized gut microbial patterns linked to metabolic risk. By identifying B2 and the newly characterized P2 enterotypes as high-risk microbial profiles, this study opens new avenues for microbiome-based stratification and early intervention in metabolic disease management.
Gut PathogensGASTROENTEROLOGY & HEPATOLOGY-MICROBIOLOGY
CiteScore
7.70
自引率
2.40%
发文量
43
期刊介绍:
Gut Pathogens is a fast publishing, inclusive and prominent international journal which recognizes the need for a publishing platform uniquely tailored to reflect the full breadth of research in the biology and medicine of pathogens, commensals and functional microbiota of the gut. The journal publishes basic, clinical and cutting-edge research on all aspects of the above mentioned organisms including probiotic bacteria and yeasts and their products. The scope also covers the related ecology, molecular genetics, physiology and epidemiology of these microbes. The journal actively invites timely reports on the novel aspects of genomics, metagenomics, microbiota profiling and systems biology.
Gut Pathogens will also consider, at the discretion of the editors, descriptive studies identifying a new genome sequence of a gut microbe or a series of related microbes (such as those obtained from new hosts, niches, settings, outbreaks and epidemics) and those obtained from single or multiple hosts at one or different time points (chronological evolution).