小鼠骨骼肌中USP2的抑制:肌肉组织氧化应激的模型。

IF 1.2 4区 农林科学 Q1 VETERINARY SCIENCES
Masaki Fujimoto, Tomohito Iwasaki, Marina Hosotani Saito, Naoki Takahashi, Mayuko Hashimoto, Eiki Takahashi, Hiroshi Kitamura
{"title":"小鼠骨骼肌中USP2的抑制:肌肉组织氧化应激的模型。","authors":"Masaki Fujimoto, Tomohito Iwasaki, Marina Hosotani Saito, Naoki Takahashi, Mayuko Hashimoto, Eiki Takahashi, Hiroshi Kitamura","doi":"10.1538/expanim.25-0032","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence indicates that oxidative stress in skeletal muscle is a prerequisite for sarcopenia in diabetic patients. In this study, we show that ubiquitin-specific protease (USP) 2 mitigates the accumulation of reactive oxygen species (ROS) in mature muscle cells. Treatment with ML364, a canonical USP2 inhibitor, robustly increased mitochondrial ROS in mouse C2C12 myotubes and caused an accompanying increase in the glutathione disulfide (GSSG)/glutathione (GSH) ratio. ML364 also caused mitochondrial damage in C2C12 myotubes, resulting in a reduction in intracellular adenosine triphosphate levels. Correspondingly, under diabetic condition, the muscle-specific Usp2-knockout (msUsp2KO) C57BL/6N mice exhibited a significantly higher lipid peroxide level and GSSG/GSH ratio in skeletal muscle than the control mice. The msUsp2KO mice also exhibited augmented insulin resistance and glucose intolerance, but showed no obvious deterioration in muscle weight or histology relative to the control mice. However, damaged mitochondria in the soleus muscle were more frequently observed in msUsp2KO mice than in the control mice. Together, these data suggest that USP2 mitigates ROS accumulation and subsequent mitochondrial damage in muscle cells in mice.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of USP2 in mouse skeletal muscle: a model of oxidative stress in muscle tissue.\",\"authors\":\"Masaki Fujimoto, Tomohito Iwasaki, Marina Hosotani Saito, Naoki Takahashi, Mayuko Hashimoto, Eiki Takahashi, Hiroshi Kitamura\",\"doi\":\"10.1538/expanim.25-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emerging evidence indicates that oxidative stress in skeletal muscle is a prerequisite for sarcopenia in diabetic patients. In this study, we show that ubiquitin-specific protease (USP) 2 mitigates the accumulation of reactive oxygen species (ROS) in mature muscle cells. Treatment with ML364, a canonical USP2 inhibitor, robustly increased mitochondrial ROS in mouse C2C12 myotubes and caused an accompanying increase in the glutathione disulfide (GSSG)/glutathione (GSH) ratio. ML364 also caused mitochondrial damage in C2C12 myotubes, resulting in a reduction in intracellular adenosine triphosphate levels. Correspondingly, under diabetic condition, the muscle-specific Usp2-knockout (msUsp2KO) C57BL/6N mice exhibited a significantly higher lipid peroxide level and GSSG/GSH ratio in skeletal muscle than the control mice. The msUsp2KO mice also exhibited augmented insulin resistance and glucose intolerance, but showed no obvious deterioration in muscle weight or histology relative to the control mice. However, damaged mitochondria in the soleus muscle were more frequently observed in msUsp2KO mice than in the control mice. Together, these data suggest that USP2 mitigates ROS accumulation and subsequent mitochondrial damage in muscle cells in mice.</p>\",\"PeriodicalId\":12102,\"journal\":{\"name\":\"Experimental Animals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Animals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1538/expanim.25-0032\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.25-0032","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

新出现的证据表明,骨骼肌氧化应激是糖尿病患者肌肉减少症的先决条件。在这项研究中,我们发现泛素特异性蛋白酶(USP) 2减轻了成熟肌肉细胞中活性氧(ROS)的积累。ML364是一种典型的USP2抑制剂,可显著增加小鼠C2C12肌管中的线粒体ROS,并引起谷胱甘肽二硫(GSSG)/谷胱甘肽(GSH)比值的增加。ML364还引起C2C12肌管线粒体损伤,导致细胞内三磷酸腺苷水平降低。相应地,在糖尿病条件下,肌肉特异性usp2敲除(msus2ko) C57BL/6N小鼠的骨骼肌中脂质过氧化水平和GSSG/GSH比值明显高于对照小鼠。msus2ko小鼠也表现出胰岛素抵抗和葡萄糖耐受不良的增强,但与对照小鼠相比,肌肉重量或组织学没有明显恶化。然而,与对照组小鼠相比,msus2ko小鼠比目鱼肌线粒体损伤更频繁。综上所述,这些数据表明USP2减轻了小鼠肌肉细胞中ROS的积累和随后的线粒体损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppression of USP2 in mouse skeletal muscle: a model of oxidative stress in muscle tissue.

Emerging evidence indicates that oxidative stress in skeletal muscle is a prerequisite for sarcopenia in diabetic patients. In this study, we show that ubiquitin-specific protease (USP) 2 mitigates the accumulation of reactive oxygen species (ROS) in mature muscle cells. Treatment with ML364, a canonical USP2 inhibitor, robustly increased mitochondrial ROS in mouse C2C12 myotubes and caused an accompanying increase in the glutathione disulfide (GSSG)/glutathione (GSH) ratio. ML364 also caused mitochondrial damage in C2C12 myotubes, resulting in a reduction in intracellular adenosine triphosphate levels. Correspondingly, under diabetic condition, the muscle-specific Usp2-knockout (msUsp2KO) C57BL/6N mice exhibited a significantly higher lipid peroxide level and GSSG/GSH ratio in skeletal muscle than the control mice. The msUsp2KO mice also exhibited augmented insulin resistance and glucose intolerance, but showed no obvious deterioration in muscle weight or histology relative to the control mice. However, damaged mitochondria in the soleus muscle were more frequently observed in msUsp2KO mice than in the control mice. Together, these data suggest that USP2 mitigates ROS accumulation and subsequent mitochondrial damage in muscle cells in mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Animals
Experimental Animals 生物-动物学
CiteScore
2.80
自引率
4.20%
发文量
2
审稿时长
3 months
期刊介绍: The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信