干酪成熟真菌盘古青霉中铁载体氧原生物合成的分子基础。

IF 4.3 2区 生物学 Q1 BIOLOGY
Kathia González, Mariana Montanares, Matías Gallardo, Carlos Gil-Durán, Abel M Forero, Jaime Rodríguez, Carlos Jiménez, Inmaculada Vaca, Renato Chávez
{"title":"干酪成熟真菌盘古青霉中铁载体氧原生物合成的分子基础。","authors":"Kathia González, Mariana Montanares, Matías Gallardo, Carlos Gil-Durán, Abel M Forero, Jaime Rodríguez, Carlos Jiménez, Inmaculada Vaca, Renato Chávez","doi":"10.1186/s40659-025-00633-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Iron is an essential nutrient for microorganisms, including fungi, which have evolved strategies to acquire it. The most common strategy is the secretion of siderophores, low-molecular-weight compounds with a high affinity for ferric ions, which are involved in cellular iron uptake. Penicillium roqueforti, the fungus responsible for the ripening of blue-veined cheeses, produces coprogen, a hydroxamate-type siderophore. However, to date, the molecular basis for its biosynthesis remains elusive.</p><p><strong>Results: </strong>In this study, we identified and characterized a biosynthetic gene cluster (BGC) responsible for coprogen biosynthesis in P. roqueforti, named the cop BGC. This BGC contains seven genes, three of which (copA, copB and copE) encode enzymes directly involved in coprogen biosynthesis from precursors molecules. Using CRISPR-Cas9, we targeted these three genes and analyzed the resulting mutants by Liquid Chromatography/High-Resolution Mass Spectrometry (LC/HRMS). Our results confirmed that all three genes are necessary for coprogen biosynthesis. Phenotypically, the mutants displayed growth differences under iron-deficient conditions, which correlated with their ability to either synthesize or fail to synthesize coprogen B and dimerumic acid, intermediates in the coprogen pathway with siderophore activity.</p><p><strong>Conclusions: </strong>The results obtained in this work provide important insights into the molecular basis of coprogen biosynthesis in P. roqueforti, enhancing the understanding of how siderophores enable this fungus to thrive in iron-deficient environments.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"58 1","pages":"51"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278577/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular basis for the biosynthesis of the siderophore coprogen in the cheese-ripening fungus Penicillium roqueforti.\",\"authors\":\"Kathia González, Mariana Montanares, Matías Gallardo, Carlos Gil-Durán, Abel M Forero, Jaime Rodríguez, Carlos Jiménez, Inmaculada Vaca, Renato Chávez\",\"doi\":\"10.1186/s40659-025-00633-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Iron is an essential nutrient for microorganisms, including fungi, which have evolved strategies to acquire it. The most common strategy is the secretion of siderophores, low-molecular-weight compounds with a high affinity for ferric ions, which are involved in cellular iron uptake. Penicillium roqueforti, the fungus responsible for the ripening of blue-veined cheeses, produces coprogen, a hydroxamate-type siderophore. However, to date, the molecular basis for its biosynthesis remains elusive.</p><p><strong>Results: </strong>In this study, we identified and characterized a biosynthetic gene cluster (BGC) responsible for coprogen biosynthesis in P. roqueforti, named the cop BGC. This BGC contains seven genes, three of which (copA, copB and copE) encode enzymes directly involved in coprogen biosynthesis from precursors molecules. Using CRISPR-Cas9, we targeted these three genes and analyzed the resulting mutants by Liquid Chromatography/High-Resolution Mass Spectrometry (LC/HRMS). Our results confirmed that all three genes are necessary for coprogen biosynthesis. Phenotypically, the mutants displayed growth differences under iron-deficient conditions, which correlated with their ability to either synthesize or fail to synthesize coprogen B and dimerumic acid, intermediates in the coprogen pathway with siderophore activity.</p><p><strong>Conclusions: </strong>The results obtained in this work provide important insights into the molecular basis of coprogen biosynthesis in P. roqueforti, enhancing the understanding of how siderophores enable this fungus to thrive in iron-deficient environments.</p>\",\"PeriodicalId\":9084,\"journal\":{\"name\":\"Biological Research\",\"volume\":\"58 1\",\"pages\":\"51\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40659-025-00633-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40659-025-00633-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:铁是微生物必需的营养物质,包括真菌,它们已经进化出获取铁的策略。最常见的策略是分泌铁载体,这是一种对铁离子具有高亲和力的低分子量化合物,参与细胞铁的摄取。青霉菌,负责蓝脉奶酪成熟的真菌,产生coprogen,一种羟酸型铁载体。然而,迄今为止,其生物合成的分子基础仍然难以捉摸。结果:在本研究中,我们鉴定并鉴定了洛克福氏对虾中一个负责coproc生物合成的生物合成基因簇(BGC),命名为cop BGC。该BGC包含7个基因,其中3个基因(copA、copB和copE)编码直接参与前体分子生物合成coprogs的酶。使用CRISPR-Cas9,我们针对这三个基因,并通过液相色谱/高分辨率质谱(LC/HRMS)分析了产生的突变体。我们的结果证实了这三个基因都是生物合成所需的。表型上,突变体在缺铁条件下表现出生长差异,这与它们合成或不合成coproc B和二聚酸的能力有关,这两种物质是coproc途径中具有铁载体活性的中间产物。结论:本工作的结果为P. roqueforti coprogen生物合成的分子基础提供了重要的见解,增强了对铁载体如何使这种真菌在缺铁环境中茁壮成长的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular basis for the biosynthesis of the siderophore coprogen in the cheese-ripening fungus Penicillium roqueforti.

Background: Iron is an essential nutrient for microorganisms, including fungi, which have evolved strategies to acquire it. The most common strategy is the secretion of siderophores, low-molecular-weight compounds with a high affinity for ferric ions, which are involved in cellular iron uptake. Penicillium roqueforti, the fungus responsible for the ripening of blue-veined cheeses, produces coprogen, a hydroxamate-type siderophore. However, to date, the molecular basis for its biosynthesis remains elusive.

Results: In this study, we identified and characterized a biosynthetic gene cluster (BGC) responsible for coprogen biosynthesis in P. roqueforti, named the cop BGC. This BGC contains seven genes, three of which (copA, copB and copE) encode enzymes directly involved in coprogen biosynthesis from precursors molecules. Using CRISPR-Cas9, we targeted these three genes and analyzed the resulting mutants by Liquid Chromatography/High-Resolution Mass Spectrometry (LC/HRMS). Our results confirmed that all three genes are necessary for coprogen biosynthesis. Phenotypically, the mutants displayed growth differences under iron-deficient conditions, which correlated with their ability to either synthesize or fail to synthesize coprogen B and dimerumic acid, intermediates in the coprogen pathway with siderophore activity.

Conclusions: The results obtained in this work provide important insights into the molecular basis of coprogen biosynthesis in P. roqueforti, enhancing the understanding of how siderophores enable this fungus to thrive in iron-deficient environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Research
Biological Research 生物-生物学
CiteScore
10.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Biological Research is an open access, peer-reviewed journal that encompasses diverse fields of experimental biology, such as biochemistry, bioinformatics, biotechnology, cell biology, cancer, chemical biology, developmental biology, evolutionary biology, genetics, genomics, immunology, marine biology, microbiology, molecular biology, neuroscience, plant biology, physiology, stem cell research, structural biology and systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信