{"title":"SARS-CoV-2刺突糖蛋白β变异的光谱二级结构指纹图谱。","authors":"Rosanna Mosetti, Tiziana Mancini, Federica Bertelà, Salvatore Macis, Nicole Luchetti, Velia Minicozzi, Stefano Lupi, Annalisa D'Arco","doi":"10.1007/s00249-025-01782-8","DOIUrl":null,"url":null,"abstract":"<p><p>The global outbreak of COVID-19 pandemic has been accompanied by the emergence of numerous mutated forms of the SARS-CoV-2 virus, exhibiting an increasingly refined capacity to adapt to the human host. The majority of mutations affect viral proteins, particularly the Spike glycoprotein (S), leading to alterations in their physicochemical properties, in secondary structures and biological functions. In the present work, we performed, to the best of our knowledge, the first infrared spectroscopic characterization of monomeric spike glycoprotein subunits 1 (S1) of SARS-CoV-2 Beta variant at pH 7.4, combining the experimental results with Molecular Dynamic simulations, Definition of Secondary Structure of Proteins (DSSP) assignments and hydrophobicity calculations. This integrated approach has yielded valuable insights into the protein secondary structure, hydrophobic behaviour, conformational dynamics, and functional attributes, factors essential for a comprehensive understanding of the viral protein domain. Our results reveal that the SARS-CoV-2 S1 Beta variant is characterized by a secondary structure enriched with antiparallel β-sheets, as consistently supported by both experimental data and computational models. Moreover, a comparative analysis of the experimental results with hydrophobicity calculations indicates that the Beta variant exhibits a slightly more hydrophilic nature relative to the SARS-CoV-2 S1 Wild Type.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic secondary structure fingerprint of β-variant of SARS-CoV-2 spike glycoprotein.\",\"authors\":\"Rosanna Mosetti, Tiziana Mancini, Federica Bertelà, Salvatore Macis, Nicole Luchetti, Velia Minicozzi, Stefano Lupi, Annalisa D'Arco\",\"doi\":\"10.1007/s00249-025-01782-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global outbreak of COVID-19 pandemic has been accompanied by the emergence of numerous mutated forms of the SARS-CoV-2 virus, exhibiting an increasingly refined capacity to adapt to the human host. The majority of mutations affect viral proteins, particularly the Spike glycoprotein (S), leading to alterations in their physicochemical properties, in secondary structures and biological functions. In the present work, we performed, to the best of our knowledge, the first infrared spectroscopic characterization of monomeric spike glycoprotein subunits 1 (S1) of SARS-CoV-2 Beta variant at pH 7.4, combining the experimental results with Molecular Dynamic simulations, Definition of Secondary Structure of Proteins (DSSP) assignments and hydrophobicity calculations. This integrated approach has yielded valuable insights into the protein secondary structure, hydrophobic behaviour, conformational dynamics, and functional attributes, factors essential for a comprehensive understanding of the viral protein domain. Our results reveal that the SARS-CoV-2 S1 Beta variant is characterized by a secondary structure enriched with antiparallel β-sheets, as consistently supported by both experimental data and computational models. Moreover, a comparative analysis of the experimental results with hydrophobicity calculations indicates that the Beta variant exhibits a slightly more hydrophilic nature relative to the SARS-CoV-2 S1 Wild Type.</p>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1007/s00249-025-01782-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01782-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Spectroscopic secondary structure fingerprint of β-variant of SARS-CoV-2 spike glycoprotein.
The global outbreak of COVID-19 pandemic has been accompanied by the emergence of numerous mutated forms of the SARS-CoV-2 virus, exhibiting an increasingly refined capacity to adapt to the human host. The majority of mutations affect viral proteins, particularly the Spike glycoprotein (S), leading to alterations in their physicochemical properties, in secondary structures and biological functions. In the present work, we performed, to the best of our knowledge, the first infrared spectroscopic characterization of monomeric spike glycoprotein subunits 1 (S1) of SARS-CoV-2 Beta variant at pH 7.4, combining the experimental results with Molecular Dynamic simulations, Definition of Secondary Structure of Proteins (DSSP) assignments and hydrophobicity calculations. This integrated approach has yielded valuable insights into the protein secondary structure, hydrophobic behaviour, conformational dynamics, and functional attributes, factors essential for a comprehensive understanding of the viral protein domain. Our results reveal that the SARS-CoV-2 S1 Beta variant is characterized by a secondary structure enriched with antiparallel β-sheets, as consistently supported by both experimental data and computational models. Moreover, a comparative analysis of the experimental results with hydrophobicity calculations indicates that the Beta variant exhibits a slightly more hydrophilic nature relative to the SARS-CoV-2 S1 Wild Type.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.