融合系统特征类产生的上同调子谱

IF 0.9 3区 数学 Q2 MATHEMATICS
Ian J. Leary, Jason Semeraro
{"title":"融合系统特征类产生的上同调子谱","authors":"Ian J. Leary,&nbsp;Jason Semeraro","doi":"10.1112/blms.70074","DOIUrl":null,"url":null,"abstract":"<p>If <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> is a saturated fusion system on a finite <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-group <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, we define the Chern subring <span></span><math>\n <semantics>\n <mrow>\n <mo>Ch</mo>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\operatorname{Ch}}(\\mathcal {F})$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> to be the subring of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>;</mo>\n <msub>\n <mi>F</mi>\n <mi>p</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^*(S;{\\mathbb {F}}_p)$</annotation>\n </semantics></math> generated by Chern classes of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math>-stable representations of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. We show that <span></span><math>\n <semantics>\n <mrow>\n <mo>Ch</mo>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <annotation>${\\operatorname{Ch}}(\\mathcal {F})$</annotation>\n </semantics></math> is contained in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mo>∗</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>;</mo>\n <msub>\n <mi>F</mi>\n <mi>p</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^*(\\mathcal {F};{\\mathbb {F}}_p)$</annotation>\n </semantics></math> and apply a result of Green and the first author to describe its maximal ideal spectrum in terms of a certain category of elementary abelian subgroups. We obtain similar results for various related subrings, including those generated by characteristic classes of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math>-stable <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>-sets.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"1990-2005"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70074","citationCount":"0","resultStr":"{\"title\":\"Spectra of subrings of cohomology generated by characteristic classes for fusion systems\",\"authors\":\"Ian J. Leary,&nbsp;Jason Semeraro\",\"doi\":\"10.1112/blms.70074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>If <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math> is a saturated fusion system on a finite <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-group <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>, we define the Chern subring <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>Ch</mo>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\operatorname{Ch}}(\\\\mathcal {F})$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math> to be the subring of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mo>∗</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>;</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^*(S;{\\\\mathbb {F}}_p)$</annotation>\\n </semantics></math> generated by Chern classes of <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math>-stable representations of <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>. We show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>Ch</mo>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>${\\\\operatorname{Ch}}(\\\\mathcal {F})$</annotation>\\n </semantics></math> is contained in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mo>∗</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>;</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^*(\\\\mathcal {F};{\\\\mathbb {F}}_p)$</annotation>\\n </semantics></math> and apply a result of Green and the first author to describe its maximal ideal spectrum in terms of a certain category of elementary abelian subgroups. We obtain similar results for various related subrings, including those generated by characteristic classes of <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math>-stable <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>-sets.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 7\",\"pages\":\"1990-2005\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70074\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70074\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70074","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果F $\mathcal {F}$是有限p$ p$ -群S$ S$上的饱和融合系统,我们定义F $\mathcal {F}$的chen子带Ch (F)$ {\operatorname{Ch}}(\mathcal {F})$是H∗的子带(5);F p)$ H^*(S;{\mathbb {F}}_p)$由F $\mathcal {F}$的陈氏类生成- S$ S$的稳定表示。证明了Ch (F)$ {\operatorname{Ch}}(\mathcal {F})$包含在H∗(F;​F p)$ H^*(\mathcal {F};{\mathbb {F}}_p)$,并应用Green和第一作者的结果在某一类初等阿贝尔子群上描述其最大理想谱。对于F $\mathcal {F}$ -stable S$ S$ -sets的特征类,我们得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spectra of subrings of cohomology generated by characteristic classes for fusion systems

Spectra of subrings of cohomology generated by characteristic classes for fusion systems

Spectra of subrings of cohomology generated by characteristic classes for fusion systems

Spectra of subrings of cohomology generated by characteristic classes for fusion systems

Spectra of subrings of cohomology generated by characteristic classes for fusion systems

Spectra of subrings of cohomology generated by characteristic classes for fusion systems

If F $\mathcal {F}$ is a saturated fusion system on a finite p $p$ -group S $S$ , we define the Chern subring Ch ( F ) ${\operatorname{Ch}}(\mathcal {F})$ of F $\mathcal {F}$ to be the subring of H ( S ; F p ) $H^*(S;{\mathbb {F}}_p)$ generated by Chern classes of F $\mathcal {F}$ -stable representations of S $S$ . We show that Ch ( F ) ${\operatorname{Ch}}(\mathcal {F})$ is contained in H ( F ; F p ) $H^*(\mathcal {F};{\mathbb {F}}_p)$ and apply a result of Green and the first author to describe its maximal ideal spectrum in terms of a certain category of elementary abelian subgroups. We obtain similar results for various related subrings, including those generated by characteristic classes of F $\mathcal {F}$ -stable S $S$ -sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信