单位Cartier和单位Frobenius模的内射维数

IF 0.9 3区 数学 Q2 MATHEMATICS
Manuel Blickle, Daniel Fink, Alexandria Wheeler, Wenliang Zhang
{"title":"单位Cartier和单位Frobenius模的内射维数","authors":"Manuel Blickle,&nbsp;Daniel Fink,&nbsp;Alexandria Wheeler,&nbsp;Wenliang Zhang","doi":"10.1112/blms.70075","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be a regular <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite ring of prime characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. We prove that the injective dimension of every unit Frobenius module <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> in the category of unit Frobenius modules is at most <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <msub>\n <mo>Supp</mo>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim (\\operatorname{Supp}_R(M))+1$</annotation>\n </semantics></math>. We further show that for unit Cartier modules the same bound holds over any noetherian <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite ring <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> of prime characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. This shows that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mi>A</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim A+1$</annotation>\n </semantics></math> is a uniform upper bound for the injective dimension of any unit Cartier module over a noetherian <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite ring <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2006-2017"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70075","citationCount":"0","resultStr":"{\"title\":\"On the injective dimension of unit Cartier and unit Frobenius modules\",\"authors\":\"Manuel Blickle,&nbsp;Daniel Fink,&nbsp;Alexandria Wheeler,&nbsp;Wenliang Zhang\",\"doi\":\"10.1112/blms.70075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> be a regular <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-finite ring of prime characteristic <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. We prove that the injective dimension of every unit Frobenius module <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> in the category of unit Frobenius modules is at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <msub>\\n <mo>Supp</mo>\\n <mi>R</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\dim (\\\\operatorname{Supp}_R(M))+1$</annotation>\\n </semantics></math>. We further show that for unit Cartier modules the same bound holds over any noetherian <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-finite ring <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> of prime characteristic <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. This shows that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mi>A</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\dim A+1$</annotation>\\n </semantics></math> is a uniform upper bound for the injective dimension of any unit Cartier module over a noetherian <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-finite ring <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 7\",\"pages\":\"2006-2017\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70075\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设R$ R$是一个素数特征为p$ p$的正则F$ F$ -有限环。证明了在单位Frobenius模的范畴中,每个单位Frobenius模M$ M$的内射维不超过dim (Supp R (M))。)+1$ \dim (\operatorname{Supp}_R(M))+1$。我们进一步证明了对于单位Cartier模,相同的界在任何素数特征为p$ p$的noether F$ F$ -有限环A$ A$上成立。这表明dim A+1$ \dim A+1$是noether F$ F$ -有限环A$ A$上任意单位Cartier模的内射维的一致上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the injective dimension of unit Cartier and unit Frobenius modules

On the injective dimension of unit Cartier and unit Frobenius modules

On the injective dimension of unit Cartier and unit Frobenius modules

On the injective dimension of unit Cartier and unit Frobenius modules

On the injective dimension of unit Cartier and unit Frobenius modules

Let R $R$ be a regular F $F$ -finite ring of prime characteristic p $p$ . We prove that the injective dimension of every unit Frobenius module M $M$ in the category of unit Frobenius modules is at most dim ( Supp R ( M ) ) + 1 $\dim (\operatorname{Supp}_R(M))+1$ . We further show that for unit Cartier modules the same bound holds over any noetherian F $F$ -finite ring A $A$ of prime characteristic p $p$ . This shows that dim A + 1 $\dim A+1$ is a uniform upper bound for the injective dimension of any unit Cartier module over a noetherian F $F$ -finite ring A $A$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信