Manuel Blickle, Daniel Fink, Alexandria Wheeler, Wenliang Zhang
{"title":"单位Cartier和单位Frobenius模的内射维数","authors":"Manuel Blickle, Daniel Fink, Alexandria Wheeler, Wenliang Zhang","doi":"10.1112/blms.70075","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be a regular <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite ring of prime characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. We prove that the injective dimension of every unit Frobenius module <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> in the category of unit Frobenius modules is at most <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <msub>\n <mo>Supp</mo>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim (\\operatorname{Supp}_R(M))+1$</annotation>\n </semantics></math>. We further show that for unit Cartier modules the same bound holds over any noetherian <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite ring <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> of prime characteristic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. This shows that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mi>A</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim A+1$</annotation>\n </semantics></math> is a uniform upper bound for the injective dimension of any unit Cartier module over a noetherian <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite ring <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2006-2017"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70075","citationCount":"0","resultStr":"{\"title\":\"On the injective dimension of unit Cartier and unit Frobenius modules\",\"authors\":\"Manuel Blickle, Daniel Fink, Alexandria Wheeler, Wenliang Zhang\",\"doi\":\"10.1112/blms.70075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$R$</annotation>\\n </semantics></math> be a regular <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-finite ring of prime characteristic <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. We prove that the injective dimension of every unit Frobenius module <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> in the category of unit Frobenius modules is at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <msub>\\n <mo>Supp</mo>\\n <mi>R</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\dim (\\\\operatorname{Supp}_R(M))+1$</annotation>\\n </semantics></math>. We further show that for unit Cartier modules the same bound holds over any noetherian <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-finite ring <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> of prime characteristic <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. This shows that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mi>A</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\dim A+1$</annotation>\\n </semantics></math> is a uniform upper bound for the injective dimension of any unit Cartier module over a noetherian <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-finite ring <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 7\",\"pages\":\"2006-2017\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70075\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70075\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the injective dimension of unit Cartier and unit Frobenius modules
Let be a regular -finite ring of prime characteristic . We prove that the injective dimension of every unit Frobenius module in the category of unit Frobenius modules is at most . We further show that for unit Cartier modules the same bound holds over any noetherian -finite ring of prime characteristic . This shows that is a uniform upper bound for the injective dimension of any unit Cartier module over a noetherian -finite ring .