GIT商的二分几何

IF 0.9 3区 数学 Q2 MATHEMATICS
Ruadhaí Dervan, Rémi Reboulet
{"title":"GIT商的二分几何","authors":"Ruadhaí Dervan,&nbsp;Rémi Reboulet","doi":"10.1112/blms.70072","DOIUrl":null,"url":null,"abstract":"<p>Geometric invariant theory (GIT) produces quotients of algebraic varieties by reductive groups. If the variety is projective, this quotient depends on a choice of polarisation; by work of Dolgachev–Hu and Thaddeus, it is known that two quotients of the same variety using different polarisations are related by birational transformations. Only finitely many birational varieties arise in this way: variation of GIT fails to capture the entirety of the birational geometry of GIT quotients. We construct a space parametrising all possible GIT quotients of all birational models of the variety in a simple and natural way, which captures the entirety of the birational geometry of GIT quotients in a precise sense. It yields in particular a compactification of a birational analogue of the set of stable orbits of the variety.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"1952-1967"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70072","citationCount":"0","resultStr":"{\"title\":\"The birational geometry of GIT quotients\",\"authors\":\"Ruadhaí Dervan,&nbsp;Rémi Reboulet\",\"doi\":\"10.1112/blms.70072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Geometric invariant theory (GIT) produces quotients of algebraic varieties by reductive groups. If the variety is projective, this quotient depends on a choice of polarisation; by work of Dolgachev–Hu and Thaddeus, it is known that two quotients of the same variety using different polarisations are related by birational transformations. Only finitely many birational varieties arise in this way: variation of GIT fails to capture the entirety of the birational geometry of GIT quotients. We construct a space parametrising all possible GIT quotients of all birational models of the variety in a simple and natural way, which captures the entirety of the birational geometry of GIT quotients in a precise sense. It yields in particular a compactification of a birational analogue of the set of stable orbits of the variety.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 7\",\"pages\":\"1952-1967\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70072\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70072","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

几何不变理论(GIT)利用约化群生成代数变量的商。如果变化是射影的,这个商取决于极化的选择;通过Dolgachev-Hu和Thaddeus的工作,我们知道使用不同极化的相同种类的两个商通过两种变换相关联。只有有限多的双民族变量以这种方式出现:GIT的变化不能捕捉到GIT商数的全部双民族几何。我们以一种简单而自然的方式构造了一个空间参数化所有可能的GIT商的品种的所有双族模型,它在精确的意义上捕获了GIT商的全部双族几何。特别地,它产生了该变种的一组稳定轨道的双态模拟的紧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The birational geometry of GIT quotients

The birational geometry of GIT quotients

The birational geometry of GIT quotients

The birational geometry of GIT quotients

The birational geometry of GIT quotients

Geometric invariant theory (GIT) produces quotients of algebraic varieties by reductive groups. If the variety is projective, this quotient depends on a choice of polarisation; by work of Dolgachev–Hu and Thaddeus, it is known that two quotients of the same variety using different polarisations are related by birational transformations. Only finitely many birational varieties arise in this way: variation of GIT fails to capture the entirety of the birational geometry of GIT quotients. We construct a space parametrising all possible GIT quotients of all birational models of the variety in a simple and natural way, which captures the entirety of the birational geometry of GIT quotients in a precise sense. It yields in particular a compactification of a birational analogue of the set of stable orbits of the variety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信