下载PDF
{"title":"大负Robin参数下主拉普拉斯特征值的特殊行为","authors":"Charlotte Dietze, Konstantin Pankrashkin","doi":"10.1112/jlms.70242","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\Omega \\subset \\mathbb {R}^n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\geqslant 2$</annotation>\n </semantics></math> be a bounded Lipschitz domain with outer unit normal <span></span><math>\n <semantics>\n <mi>ν</mi>\n <annotation>$\\nu$</annotation>\n </semantics></math>. For <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\alpha \\in \\mathbb {R}$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <msubsup>\n <mi>R</mi>\n <mi>Ω</mi>\n <mi>α</mi>\n </msubsup>\n <annotation>$R_\\Omega ^\\alpha$</annotation>\n </semantics></math> be the Laplacian in <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> with the Robin boundary condition <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>∂</mi>\n <mi>ν</mi>\n </msub>\n <mi>u</mi>\n <mo>+</mo>\n <mi>α</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\partial _\\nu u+\\alpha u=0$</annotation>\n </semantics></math>, and denote by <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>(</mo>\n <msubsup>\n <mi>R</mi>\n <mi>Ω</mi>\n <mi>α</mi>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <annotation>$E(R^\\alpha _\\Omega)$</annotation>\n </semantics></math> its principal eigenvalue. In 2017, Bucur, Freitas, and Kennedy stated the following open question: <i>Does the limit of the ratio</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>R</mi>\n <mi>Ω</mi>\n <mi>α</mi>\n </msubsup>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <msup>\n <mi>α</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$E(R_\\Omega ^\\alpha)/ \\alpha ^2$</annotation>\n </semantics></math> <i>for</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>→</mo>\n <mo>−</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\alpha \\rightarrow -\\infty$</annotation>\n </semantics></math> <i>always exist?</i> We give a negative answer.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70242","citationCount":"0","resultStr":"{\"title\":\"Peculiar behavior of the principal Laplacian eigenvalue for large negative Robin parameters\",\"authors\":\"Charlotte Dietze, Konstantin Pankrashkin\",\"doi\":\"10.1112/jlms.70242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Ω</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Omega \\\\subset \\\\mathbb {R}^n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 2$</annotation>\\n </semantics></math> be a bounded Lipschitz domain with outer unit normal <span></span><math>\\n <semantics>\\n <mi>ν</mi>\\n <annotation>$\\\\nu$</annotation>\\n </semantics></math>. For <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>∈</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$\\\\alpha \\\\in \\\\mathbb {R}$</annotation>\\n </semantics></math>, let <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>R</mi>\\n <mi>Ω</mi>\\n <mi>α</mi>\\n </msubsup>\\n <annotation>$R_\\\\Omega ^\\\\alpha$</annotation>\\n </semantics></math> be the Laplacian in <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> with the Robin boundary condition <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>∂</mi>\\n <mi>ν</mi>\\n </msub>\\n <mi>u</mi>\\n <mo>+</mo>\\n <mi>α</mi>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\partial _\\\\nu u+\\\\alpha u=0$</annotation>\\n </semantics></math>, and denote by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>(</mo>\\n <msubsup>\\n <mi>R</mi>\\n <mi>Ω</mi>\\n <mi>α</mi>\\n </msubsup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$E(R^\\\\alpha _\\\\Omega)$</annotation>\\n </semantics></math> its principal eigenvalue. In 2017, Bucur, Freitas, and Kennedy stated the following open question: <i>Does the limit of the ratio</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>R</mi>\\n <mi>Ω</mi>\\n <mi>α</mi>\\n </msubsup>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <msup>\\n <mi>α</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$E(R_\\\\Omega ^\\\\alpha)/ \\\\alpha ^2$</annotation>\\n </semantics></math> <i>for</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>→</mo>\\n <mo>−</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$\\\\alpha \\\\rightarrow -\\\\infty$</annotation>\\n </semantics></math> <i>always exist?</i> We give a negative answer.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70242\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70242\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70242","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用