局部和非局部系统的De Giorgi方法

IF 1.2 2区 数学 Q1 MATHEMATICS
Linus Behn, Lars Diening, Simon Nowak, Toni Scharle
{"title":"局部和非局部系统的De Giorgi方法","authors":"Linus Behn,&nbsp;Lars Diening,&nbsp;Simon Nowak,&nbsp;Toni Scharle","doi":"10.1112/jlms.70237","DOIUrl":null,"url":null,"abstract":"<p>We extend the De Giorgi iteration technique to the vectorial setting. For this we replace the usual scalar truncation operator by a vectorial shortening operator. As an application, we prove local boundedness for local and nonlocal nonlinear systems. Furthermore, we show convex hull properties, which are a generalization of the maximum principle to the case of systems.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70237","citationCount":"0","resultStr":"{\"title\":\"The De Giorgi method for local and nonlocal systems\",\"authors\":\"Linus Behn,&nbsp;Lars Diening,&nbsp;Simon Nowak,&nbsp;Toni Scharle\",\"doi\":\"10.1112/jlms.70237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We extend the De Giorgi iteration technique to the vectorial setting. For this we replace the usual scalar truncation operator by a vectorial shortening operator. As an application, we prove local boundedness for local and nonlocal nonlinear systems. Furthermore, we show convex hull properties, which are a generalization of the maximum principle to the case of systems.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70237\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70237\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70237","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将De Giorgi迭代技术扩展到向量设置。为此,我们将通常的标量截断算子替换为矢量缩短算子。作为应用,我们证明了局部和非局部非线性系统的局部有界性。进一步,我们证明了凸包性质,这是极大值原理在系统情况下的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The De Giorgi method for local and nonlocal systems

The De Giorgi method for local and nonlocal systems

The De Giorgi method for local and nonlocal systems

The De Giorgi method for local and nonlocal systems

The De Giorgi method for local and nonlocal systems

We extend the De Giorgi iteration technique to the vectorial setting. For this we replace the usual scalar truncation operator by a vectorial shortening operator. As an application, we prove local boundedness for local and nonlocal nonlinear systems. Furthermore, we show convex hull properties, which are a generalization of the maximum principle to the case of systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信