微机器人用共价键交换耦合纳米磁体基水凝胶复合材料

IF 6.1 Q1 AUTOMATION & CONTROL SYSTEMS
Lukas Hertle, Hyeon Ko, Valentin Gantenbein, Joaquin Llacer-Wintle, Hao Ye, Mathieu Mirjolet, Andrea Veciana, Fabian C. Landers, Minsoo Kim, Elric Zhang, Minghan Hu, Josep Puigmartí-Luis, Marta Estrader, Xiang-Zhong Chen, Bradley J. Nelson, Salvador Pané
{"title":"微机器人用共价键交换耦合纳米磁体基水凝胶复合材料","authors":"Lukas Hertle,&nbsp;Hyeon Ko,&nbsp;Valentin Gantenbein,&nbsp;Joaquin Llacer-Wintle,&nbsp;Hao Ye,&nbsp;Mathieu Mirjolet,&nbsp;Andrea Veciana,&nbsp;Fabian C. Landers,&nbsp;Minsoo Kim,&nbsp;Elric Zhang,&nbsp;Minghan Hu,&nbsp;Josep Puigmartí-Luis,&nbsp;Marta Estrader,&nbsp;Xiang-Zhong Chen,&nbsp;Bradley J. Nelson,&nbsp;Salvador Pané","doi":"10.1002/aisy.202400752","DOIUrl":null,"url":null,"abstract":"<p>The last decade has witnessed rapid progress in the development of soft microrobots for biomedical applications, largely powered by the incorporation of new materials in their design to address various challenges. Herein, a unique magnetic nanoparticle-hydrogel composite designed for microrobot applications is introduced. This composite comprises iron platinum-zinc ferrite nanoparticles whose magnetic properties are enhanced by magnetic exchange-coupling behavior. The introduction of zinc ferrite further allows for grafting alkyne-bearing ligands on the nanoparticles, enabling them to be covalently immobilized within the hydrogel framework via azide-alkyne cycloaddition, thereby improving the composite's stability. Using a template-assisted 3D fabrication technique, the feasibility of using this composite for soft microrobots is demonstrated. Hence, one can assume this straightforward procedure to be easily adapted to other material systems, facilitating the creation of more customized soft microrobots.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 7","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400752","citationCount":"0","resultStr":"{\"title\":\"A Covalently Bonded Exchange Coupled Nanomagnet-Based Hydrogel Composite for Microrobotic Applications\",\"authors\":\"Lukas Hertle,&nbsp;Hyeon Ko,&nbsp;Valentin Gantenbein,&nbsp;Joaquin Llacer-Wintle,&nbsp;Hao Ye,&nbsp;Mathieu Mirjolet,&nbsp;Andrea Veciana,&nbsp;Fabian C. Landers,&nbsp;Minsoo Kim,&nbsp;Elric Zhang,&nbsp;Minghan Hu,&nbsp;Josep Puigmartí-Luis,&nbsp;Marta Estrader,&nbsp;Xiang-Zhong Chen,&nbsp;Bradley J. Nelson,&nbsp;Salvador Pané\",\"doi\":\"10.1002/aisy.202400752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The last decade has witnessed rapid progress in the development of soft microrobots for biomedical applications, largely powered by the incorporation of new materials in their design to address various challenges. Herein, a unique magnetic nanoparticle-hydrogel composite designed for microrobot applications is introduced. This composite comprises iron platinum-zinc ferrite nanoparticles whose magnetic properties are enhanced by magnetic exchange-coupling behavior. The introduction of zinc ferrite further allows for grafting alkyne-bearing ligands on the nanoparticles, enabling them to be covalently immobilized within the hydrogel framework via azide-alkyne cycloaddition, thereby improving the composite's stability. Using a template-assisted 3D fabrication technique, the feasibility of using this composite for soft microrobots is demonstrated. Hence, one can assume this straightforward procedure to be easily adapted to other material systems, facilitating the creation of more customized soft microrobots.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400752\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202400752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aisy.202400752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,用于生物医学应用的软体微型机器人的发展取得了快速进展,这主要是由于在其设计中结合了新材料来应对各种挑战。本文介绍了一种独特的用于微型机器人的磁性纳米粒子-水凝胶复合材料。该复合材料由铁铂锌铁氧体纳米颗粒组成,其磁性能通过磁交换偶联行为得到增强。铁酸锌的引入进一步允许在纳米颗粒上接枝含炔配体,使它们能够通过叠氮化物-炔环加成在水凝胶框架内共价固定,从而提高复合材料的稳定性。利用模板辅助三维制造技术,证明了将该复合材料用于软微型机器人的可行性。因此,可以假设这个简单的过程很容易适应其他材料系统,促进创建更多定制的软微型机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Covalently Bonded Exchange Coupled Nanomagnet-Based Hydrogel Composite for Microrobotic Applications

A Covalently Bonded Exchange Coupled Nanomagnet-Based Hydrogel Composite for Microrobotic Applications

A Covalently Bonded Exchange Coupled Nanomagnet-Based Hydrogel Composite for Microrobotic Applications

A Covalently Bonded Exchange Coupled Nanomagnet-Based Hydrogel Composite for Microrobotic Applications

The last decade has witnessed rapid progress in the development of soft microrobots for biomedical applications, largely powered by the incorporation of new materials in their design to address various challenges. Herein, a unique magnetic nanoparticle-hydrogel composite designed for microrobot applications is introduced. This composite comprises iron platinum-zinc ferrite nanoparticles whose magnetic properties are enhanced by magnetic exchange-coupling behavior. The introduction of zinc ferrite further allows for grafting alkyne-bearing ligands on the nanoparticles, enabling them to be covalently immobilized within the hydrogel framework via azide-alkyne cycloaddition, thereby improving the composite's stability. Using a template-assisted 3D fabrication technique, the feasibility of using this composite for soft microrobots is demonstrated. Hence, one can assume this straightforward procedure to be easily adapted to other material systems, facilitating the creation of more customized soft microrobots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信