{"title":"split- F -regular $\\text{split-}F\\text{-regular}$一元代数的有限生成","authors":"Rankeya Datta, Karl Schwede, Kevin Tucker","doi":"10.1112/jlms.70234","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> be a submonoid of a free Abelian group of finite rank. We show that if <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is a field of prime characteristic such that the monoid <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-algebra <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>[</mo>\n <mi>S</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$k[S]$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mtext>split-</mtext>\n <mi>F</mi>\n <mtext>-regular</mtext>\n </mrow>\n <annotation>$\\text{split-}F\\text{-regular}$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>[</mo>\n <mi>S</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$k[S]$</annotation>\n </semantics></math> is a finitely generated <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-algebra, or equivalently, that <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is a finitely generated monoid. Split-<span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-regular rings are possibly non-Noetherian or non-<span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-finite rings that satisfy the defining property of strongly <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-regular rings from the theories of tight closure and <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-singularities. Our finite generation result provides evidence in favor of the conjecture that <span></span><math>\n <semantics>\n <mrow>\n <mtext>split-</mtext>\n <mi>F</mi>\n <mtext>-regular</mtext>\n </mrow>\n <annotation>$\\text{split-}F\\text{-regular}$</annotation>\n </semantics></math> rings in function fields over <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> have to be Noetherian. The key tool is Diophantine approximation from convex geometry.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite generation of \\n \\n \\n split-\\n F\\n -regular\\n \\n $\\\\text{split-}F\\\\text{-regular}$\\n monoid algebras\",\"authors\":\"Rankeya Datta, Karl Schwede, Kevin Tucker\",\"doi\":\"10.1112/jlms.70234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> be a submonoid of a free Abelian group of finite rank. We show that if <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> is a field of prime characteristic such that the monoid <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-algebra <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>[</mo>\\n <mi>S</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$k[S]$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>split-</mtext>\\n <mi>F</mi>\\n <mtext>-regular</mtext>\\n </mrow>\\n <annotation>$\\\\text{split-}F\\\\text{-regular}$</annotation>\\n </semantics></math>, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>[</mo>\\n <mi>S</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$k[S]$</annotation>\\n </semantics></math> is a finitely generated <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-algebra, or equivalently, that <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> is a finitely generated monoid. Split-<span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-regular rings are possibly non-Noetherian or non-<span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-finite rings that satisfy the defining property of strongly <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-regular rings from the theories of tight closure and <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-singularities. Our finite generation result provides evidence in favor of the conjecture that <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>split-</mtext>\\n <mi>F</mi>\\n <mtext>-regular</mtext>\\n </mrow>\\n <annotation>$\\\\text{split-}F\\\\text{-regular}$</annotation>\\n </semantics></math> rings in function fields over <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> have to be Noetherian. The key tool is Diophantine approximation from convex geometry.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70234\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70234","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Finite generation of
split-
F
-regular
$\text{split-}F\text{-regular}$
monoid algebras
Let be a submonoid of a free Abelian group of finite rank. We show that if is a field of prime characteristic such that the monoid -algebra is , then is a finitely generated -algebra, or equivalently, that is a finitely generated monoid. Split--regular rings are possibly non-Noetherian or non--finite rings that satisfy the defining property of strongly -regular rings from the theories of tight closure and -singularities. Our finite generation result provides evidence in favor of the conjecture that rings in function fields over have to be Noetherian. The key tool is Diophantine approximation from convex geometry.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.