离散拉普拉斯-球面和双曲

IF 1.2 2区 数学 Q1 MATHEMATICS
Ivan Izmestiev, Wai Yeung Lam
{"title":"离散拉普拉斯-球面和双曲","authors":"Ivan Izmestiev,&nbsp;Wai Yeung Lam","doi":"10.1112/jlms.70235","DOIUrl":null,"url":null,"abstract":"<p>The discrete Laplacian on Euclidean triangulated surfaces is a well-established notion. We introduce discrete Laplacians on spherical and hyperbolic triangulated surfaces. On the one hand, our definitions are close to the Euclidean one in that the edge weights contain the cotangents of certain combinations of angles and are non-negative if and only if the triangulation is Delaunay. On the other hand, these discretizations are structure-preserving in several respects. We prove that the area of a convex polyhedron can be written in terms of the discrete spherical Laplacian of the support function, whose expression is the same as the area of a smooth convex body in terms of the usual spherical Laplacian. We show that the conformal factors of discrete conformal vector fields on a triangulated surface of curvature <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$k \\in \\lbrace -1,1\\rbrace$</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <annotation>$-2k$</annotation>\n </semantics></math>-eigenfunctions of our discrete Laplacians, exactly as in the smooth setting. The discrete conformality can be understood here both in the sense of the vertex scaling and in the sense of circle patterns. Finally, we connect the <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n <annotation>$-2k$</annotation>\n </semantics></math>-eigenfunctions to infinitesimal isometric deformations of a polyhedron inscribed into corresponding quadrics.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Laplacians — Spherical and hyperbolic\",\"authors\":\"Ivan Izmestiev,&nbsp;Wai Yeung Lam\",\"doi\":\"10.1112/jlms.70235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The discrete Laplacian on Euclidean triangulated surfaces is a well-established notion. We introduce discrete Laplacians on spherical and hyperbolic triangulated surfaces. On the one hand, our definitions are close to the Euclidean one in that the edge weights contain the cotangents of certain combinations of angles and are non-negative if and only if the triangulation is Delaunay. On the other hand, these discretizations are structure-preserving in several respects. We prove that the area of a convex polyhedron can be written in terms of the discrete spherical Laplacian of the support function, whose expression is the same as the area of a smooth convex body in terms of the usual spherical Laplacian. We show that the conformal factors of discrete conformal vector fields on a triangulated surface of curvature <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <mo>{</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$k \\\\in \\\\lbrace -1,1\\\\rbrace$</annotation>\\n </semantics></math> are <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$-2k$</annotation>\\n </semantics></math>-eigenfunctions of our discrete Laplacians, exactly as in the smooth setting. The discrete conformality can be understood here both in the sense of the vertex scaling and in the sense of circle patterns. Finally, we connect the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n <annotation>$-2k$</annotation>\\n </semantics></math>-eigenfunctions to infinitesimal isometric deformations of a polyhedron inscribed into corresponding quadrics.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70235\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70235","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

欧几里得三角曲面上的离散拉普拉斯函数是一个公认的概念。在球面和双曲三角曲面上引入离散拉普拉斯算子。一方面,我们的定义接近欧几里得的定义,因为边权包含某些角度组合的余线,并且当且仅当三角剖分是Delaunay时是非负的。另一方面,这些离散化在几个方面是保持结构的。证明了凸多面体的面积可以用支撑函数的离散球面拉普拉斯式表示,其表达式与光滑凸体的面积用通常的球面拉普拉斯式表示相同。我们证明了曲率k∈{−1的三角曲面上离散共形向量场的共形因子,1} $k \in \rbrace$ -1,1\rbrace$是我们的离散拉普拉斯函数的-2k$ -2k$ -特征函数,与光滑情况完全相同。离散共态在这里既可以从顶点缩放的意义上理解,也可以从圆形图案的意义上理解。最后,我们将-2k$ -2k$ -特征函数与刻入相应二次曲面的多面体的无限小等距变形联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discrete Laplacians — Spherical and hyperbolic

Discrete Laplacians — Spherical and hyperbolic

Discrete Laplacians — Spherical and hyperbolic

Discrete Laplacians — Spherical and hyperbolic

The discrete Laplacian on Euclidean triangulated surfaces is a well-established notion. We introduce discrete Laplacians on spherical and hyperbolic triangulated surfaces. On the one hand, our definitions are close to the Euclidean one in that the edge weights contain the cotangents of certain combinations of angles and are non-negative if and only if the triangulation is Delaunay. On the other hand, these discretizations are structure-preserving in several respects. We prove that the area of a convex polyhedron can be written in terms of the discrete spherical Laplacian of the support function, whose expression is the same as the area of a smooth convex body in terms of the usual spherical Laplacian. We show that the conformal factors of discrete conformal vector fields on a triangulated surface of curvature k { 1 , 1 } $k \in \lbrace -1,1\rbrace$ are 2 k $-2k$ -eigenfunctions of our discrete Laplacians, exactly as in the smooth setting. The discrete conformality can be understood here both in the sense of the vertex scaling and in the sense of circle patterns. Finally, we connect the 2 k $-2k$ -eigenfunctions to infinitesimal isometric deformations of a polyhedron inscribed into corresponding quadrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信