关于自相似测度的正交投影的维数

IF 1.2 2区 数学 Q1 MATHEMATICS
Amir Algom, Pablo Shmerkin
{"title":"关于自相似测度的正交投影的维数","authors":"Amir Algom,&nbsp;Pablo Shmerkin","doi":"10.1112/jlms.70245","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>ν</mi>\n <annotation>$\\nu$</annotation>\n </semantics></math> be a self-similar measure on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {R}^d$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d\\geqslant 2$</annotation>\n </semantics></math>, and let <span></span><math>\n <semantics>\n <mi>π</mi>\n <annotation>$\\pi$</annotation>\n </semantics></math> be an orthogonal projection onto a <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-dimensional subspace. We formulate a criterion on the action of the group generated by the orthogonal parts of the iterated function system on <span></span><math>\n <semantics>\n <mi>π</mi>\n <annotation>$\\pi$</annotation>\n </semantics></math>, and show that it ensures that the dimension of <span></span><math>\n <semantics>\n <mrow>\n <mi>π</mi>\n <mi>ν</mi>\n </mrow>\n <annotation>$\\pi \\nu$</annotation>\n </semantics></math> is preserved; this significantly refines previous results by Hochman–Shmerkin (2012) and Falconer–Jin (2014), and is sharp for projections to lines and hyperplanes. A key ingredient in the proof is an application of a restricted projection theorem of Gan–Guo–Wang (2024).</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70245","citationCount":"0","resultStr":"{\"title\":\"On the dimension of orthogonal projections of self-similar measures\",\"authors\":\"Amir Algom,&nbsp;Pablo Shmerkin\",\"doi\":\"10.1112/jlms.70245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>ν</mi>\\n <annotation>$\\\\nu$</annotation>\\n </semantics></math> be a self-similar measure on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^d$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 2$</annotation>\\n </semantics></math>, and let <span></span><math>\\n <semantics>\\n <mi>π</mi>\\n <annotation>$\\\\pi$</annotation>\\n </semantics></math> be an orthogonal projection onto a <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-dimensional subspace. We formulate a criterion on the action of the group generated by the orthogonal parts of the iterated function system on <span></span><math>\\n <semantics>\\n <mi>π</mi>\\n <annotation>$\\\\pi$</annotation>\\n </semantics></math>, and show that it ensures that the dimension of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>π</mi>\\n <mi>ν</mi>\\n </mrow>\\n <annotation>$\\\\pi \\\\nu$</annotation>\\n </semantics></math> is preserved; this significantly refines previous results by Hochman–Shmerkin (2012) and Falconer–Jin (2014), and is sharp for projections to lines and hyperplanes. A key ingredient in the proof is an application of a restricted projection theorem of Gan–Guo–Wang (2024).</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70245\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70245","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让ν $\nu$是R d $\mathbb {R}^d$上的自相似测量,d小于2 $d\geqslant 2$,设π $\pi$是k $k$维子空间上的正交投影。我们给出了迭代函数系统的正交部分对π $\pi$的作用的判据,并证明了它保证了π ν $\pi \nu$的维数保持不变;这大大改进了Hochman-Shmerkin(2012)和Falconer-Jin(2014)之前的结果,并且对于线和超平面的投影是尖锐的。证明的关键是对Gan-Guo-Wang(2024)的受限投影定理的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the dimension of orthogonal projections of self-similar measures

On the dimension of orthogonal projections of self-similar measures

On the dimension of orthogonal projections of self-similar measures

On the dimension of orthogonal projections of self-similar measures

Let ν $\nu$ be a self-similar measure on R d $\mathbb {R}^d$ , d 2 $d\geqslant 2$ , and let π $\pi$ be an orthogonal projection onto a k $k$ -dimensional subspace. We formulate a criterion on the action of the group generated by the orthogonal parts of the iterated function system on π $\pi$ , and show that it ensures that the dimension of π ν $\pi \nu$ is preserved; this significantly refines previous results by Hochman–Shmerkin (2012) and Falconer–Jin (2014), and is sharp for projections to lines and hyperplanes. A key ingredient in the proof is an application of a restricted projection theorem of Gan–Guo–Wang (2024).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信