卡尔曼滤波张量公式与线性二次高斯控制器在多线性动力系统中的应用

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Alfonso Farina, Stefano Carletta, Giovanni Battista Palmerini, Francesco De Angelis
{"title":"卡尔曼滤波张量公式与线性二次高斯控制器在多线性动力系统中的应用","authors":"Alfonso Farina,&nbsp;Stefano Carletta,&nbsp;Giovanni Battista Palmerini,&nbsp;Francesco De Angelis","doi":"10.1049/rsn2.70056","DOIUrl":null,"url":null,"abstract":"<p>In this work, we generalise the popular Kalman filter and Linear Quadratic Gaussian controller for use on multi-sensor and multi-agent/-target radar systems. The state-space representation for the dynamical evolution of targets and the sensor measurements is developed here using tensors in place of vectors and matrices, producing a multilinear dynamical system. In this dynamical framework, the tensor forms of the Kalman filter and the Linear Quadratic Gaussian controller are developed, allowing the simultaneous processing of (i) the inputs of all sensors, producing the estimation of the state of all agents/targets and (ii) the determination of the optimal control actions of all agents/targets. These tools are applied to implement optimal parallel waveform design and tracking control for a multi-radar system acting on multiple agents. In the study case, examined numerically, the radars can (i) estimate the state of the agents in terms of range, angular displacement, radial and angular velocities and (ii) jointly determine the agents control inputs and the radars transmitted waveforms to minimise the control cost action and the energy of the transmitted signals.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70056","citationCount":"0","resultStr":"{\"title\":\"Tensor Formulation of Kalman Filter and Linear Quadratic Gaussian Controller for Applications on Multilinear Dynamical Systems\",\"authors\":\"Alfonso Farina,&nbsp;Stefano Carletta,&nbsp;Giovanni Battista Palmerini,&nbsp;Francesco De Angelis\",\"doi\":\"10.1049/rsn2.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we generalise the popular Kalman filter and Linear Quadratic Gaussian controller for use on multi-sensor and multi-agent/-target radar systems. The state-space representation for the dynamical evolution of targets and the sensor measurements is developed here using tensors in place of vectors and matrices, producing a multilinear dynamical system. In this dynamical framework, the tensor forms of the Kalman filter and the Linear Quadratic Gaussian controller are developed, allowing the simultaneous processing of (i) the inputs of all sensors, producing the estimation of the state of all agents/targets and (ii) the determination of the optimal control actions of all agents/targets. These tools are applied to implement optimal parallel waveform design and tracking control for a multi-radar system acting on multiple agents. In the study case, examined numerically, the radars can (i) estimate the state of the agents in terms of range, angular displacement, radial and angular velocities and (ii) jointly determine the agents control inputs and the radars transmitted waveforms to minimise the control cost action and the energy of the transmitted signals.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70056\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70056","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们推广了流行的卡尔曼滤波器和线性二次高斯控制器,用于多传感器和多智能体/目标雷达系统。目标的动态演化和传感器测量的状态空间表示在这里被开发,使用张量代替向量和矩阵,产生一个多线性动力系统。在这个动态框架中,卡尔曼滤波器和线性二次高斯控制器的张量形式被开发出来,允许同时处理(i)所有传感器的输入,产生对所有代理/目标状态的估计,以及(ii)确定所有代理/目标的最优控制动作。这些工具用于实现多雷达系统的最佳并行波形设计和跟踪控制。在研究案例中,通过数值检验,雷达可以(i)根据距离、角位移、径向和角速度估计agent的状态,(ii)共同确定agent的控制输入和雷达发射波形,以最小化控制成本、动作和发射信号的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tensor Formulation of Kalman Filter and Linear Quadratic Gaussian Controller for Applications on Multilinear Dynamical Systems

Tensor Formulation of Kalman Filter and Linear Quadratic Gaussian Controller for Applications on Multilinear Dynamical Systems

In this work, we generalise the popular Kalman filter and Linear Quadratic Gaussian controller for use on multi-sensor and multi-agent/-target radar systems. The state-space representation for the dynamical evolution of targets and the sensor measurements is developed here using tensors in place of vectors and matrices, producing a multilinear dynamical system. In this dynamical framework, the tensor forms of the Kalman filter and the Linear Quadratic Gaussian controller are developed, allowing the simultaneous processing of (i) the inputs of all sensors, producing the estimation of the state of all agents/targets and (ii) the determination of the optimal control actions of all agents/targets. These tools are applied to implement optimal parallel waveform design and tracking control for a multi-radar system acting on multiple agents. In the study case, examined numerically, the radars can (i) estimate the state of the agents in terms of range, angular displacement, radial and angular velocities and (ii) jointly determine the agents control inputs and the radars transmitted waveforms to minimise the control cost action and the energy of the transmitted signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信