Alfonso Farina, Stefano Carletta, Giovanni Battista Palmerini, Francesco De Angelis
{"title":"卡尔曼滤波张量公式与线性二次高斯控制器在多线性动力系统中的应用","authors":"Alfonso Farina, Stefano Carletta, Giovanni Battista Palmerini, Francesco De Angelis","doi":"10.1049/rsn2.70056","DOIUrl":null,"url":null,"abstract":"<p>In this work, we generalise the popular Kalman filter and Linear Quadratic Gaussian controller for use on multi-sensor and multi-agent/-target radar systems. The state-space representation for the dynamical evolution of targets and the sensor measurements is developed here using tensors in place of vectors and matrices, producing a multilinear dynamical system. In this dynamical framework, the tensor forms of the Kalman filter and the Linear Quadratic Gaussian controller are developed, allowing the simultaneous processing of (i) the inputs of all sensors, producing the estimation of the state of all agents/targets and (ii) the determination of the optimal control actions of all agents/targets. These tools are applied to implement optimal parallel waveform design and tracking control for a multi-radar system acting on multiple agents. In the study case, examined numerically, the radars can (i) estimate the state of the agents in terms of range, angular displacement, radial and angular velocities and (ii) jointly determine the agents control inputs and the radars transmitted waveforms to minimise the control cost action and the energy of the transmitted signals.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70056","citationCount":"0","resultStr":"{\"title\":\"Tensor Formulation of Kalman Filter and Linear Quadratic Gaussian Controller for Applications on Multilinear Dynamical Systems\",\"authors\":\"Alfonso Farina, Stefano Carletta, Giovanni Battista Palmerini, Francesco De Angelis\",\"doi\":\"10.1049/rsn2.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we generalise the popular Kalman filter and Linear Quadratic Gaussian controller for use on multi-sensor and multi-agent/-target radar systems. The state-space representation for the dynamical evolution of targets and the sensor measurements is developed here using tensors in place of vectors and matrices, producing a multilinear dynamical system. In this dynamical framework, the tensor forms of the Kalman filter and the Linear Quadratic Gaussian controller are developed, allowing the simultaneous processing of (i) the inputs of all sensors, producing the estimation of the state of all agents/targets and (ii) the determination of the optimal control actions of all agents/targets. These tools are applied to implement optimal parallel waveform design and tracking control for a multi-radar system acting on multiple agents. In the study case, examined numerically, the radars can (i) estimate the state of the agents in terms of range, angular displacement, radial and angular velocities and (ii) jointly determine the agents control inputs and the radars transmitted waveforms to minimise the control cost action and the energy of the transmitted signals.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70056\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70056","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Tensor Formulation of Kalman Filter and Linear Quadratic Gaussian Controller for Applications on Multilinear Dynamical Systems
In this work, we generalise the popular Kalman filter and Linear Quadratic Gaussian controller for use on multi-sensor and multi-agent/-target radar systems. The state-space representation for the dynamical evolution of targets and the sensor measurements is developed here using tensors in place of vectors and matrices, producing a multilinear dynamical system. In this dynamical framework, the tensor forms of the Kalman filter and the Linear Quadratic Gaussian controller are developed, allowing the simultaneous processing of (i) the inputs of all sensors, producing the estimation of the state of all agents/targets and (ii) the determination of the optimal control actions of all agents/targets. These tools are applied to implement optimal parallel waveform design and tracking control for a multi-radar system acting on multiple agents. In the study case, examined numerically, the radars can (i) estimate the state of the agents in terms of range, angular displacement, radial and angular velocities and (ii) jointly determine the agents control inputs and the radars transmitted waveforms to minimise the control cost action and the energy of the transmitted signals.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.