用T-History和DSC方法分析MWCNT和杂化纳米颗粒增强共晶PCMs凝固过程的热分析

Energy Storage Pub Date : 2025-07-22 DOI:10.1002/est2.70234
Utkarsh Srivastava, Rashmi Rekha Sahoo
{"title":"用T-History和DSC方法分析MWCNT和杂化纳米颗粒增强共晶PCMs凝固过程的热分析","authors":"Utkarsh Srivastava,&nbsp;Rashmi Rekha Sahoo","doi":"10.1002/est2.70234","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study systematically evaluates the thermophysical properties of Nano-Enhanced PCM (NEPCM) and Hybrid Nano-Enhanced PCM (HNEPCM) using both the T-history method and Differential Scanning Calorimetry (DSC). Additionally, it examines and compares the Nusselt number and heat transfer coefficient in thermal energy storage (TES) systems incorporating NEPCM and HNEPCM. The findings reveal a strong correlation between latent heat, specific heat, and phase transition temperatures obtained from the T-history method and DSC analysis, confirming the accuracy and reliability of the custom T-history setup. The average heat capacity of NEPCM was 9.56% higher than that of HNEPCM. Thermal conductivity analysis reveals that NEPCM exhibits superior performance, with values of 0.2135 W/m K (solid) and 0.2018 W/m K (liquid), whereas HNEPCM records 0.197 and 0.1802 W/m K, respectively. Notably, 1% v/v MWCNT-based NEPCM enhances heat conduction efficiency by 8.37% compared to HNEPCM. The enthalpy of fusion for NEPCM was also 4.71% higher than that of 0.05% v/v CuO and 0.05% v/v Al<sub>2</sub>O<sub>3</sub> hybrid nanoparticle-based HNEPCM, which exhibited a 24.21% lower heat transfer coefficient than NEPCM. DSC analysis reveals that HNEPCM begins melting at 41°C–42°C, whereas NEPCM exhibits its lowest endothermic peak at 45°C, with complete melting occurring within the 42°C–43°C range. These findings highlight the enhanced thermal performance of MWCNT-based NEPCM over hybrid CuO–Al<sub>2</sub>O<sub>3</sub> HNEPCM, offering valuable insights into optimizing phase change materials (PCM) for efficient TES applications.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Analysis of Solidification in MWCNT and Hybrid Nanoparticle-Enhanced Eutectic PCMs Using T-History and DSC Methods\",\"authors\":\"Utkarsh Srivastava,&nbsp;Rashmi Rekha Sahoo\",\"doi\":\"10.1002/est2.70234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study systematically evaluates the thermophysical properties of Nano-Enhanced PCM (NEPCM) and Hybrid Nano-Enhanced PCM (HNEPCM) using both the T-history method and Differential Scanning Calorimetry (DSC). Additionally, it examines and compares the Nusselt number and heat transfer coefficient in thermal energy storage (TES) systems incorporating NEPCM and HNEPCM. The findings reveal a strong correlation between latent heat, specific heat, and phase transition temperatures obtained from the T-history method and DSC analysis, confirming the accuracy and reliability of the custom T-history setup. The average heat capacity of NEPCM was 9.56% higher than that of HNEPCM. Thermal conductivity analysis reveals that NEPCM exhibits superior performance, with values of 0.2135 W/m K (solid) and 0.2018 W/m K (liquid), whereas HNEPCM records 0.197 and 0.1802 W/m K, respectively. Notably, 1% v/v MWCNT-based NEPCM enhances heat conduction efficiency by 8.37% compared to HNEPCM. The enthalpy of fusion for NEPCM was also 4.71% higher than that of 0.05% v/v CuO and 0.05% v/v Al<sub>2</sub>O<sub>3</sub> hybrid nanoparticle-based HNEPCM, which exhibited a 24.21% lower heat transfer coefficient than NEPCM. DSC analysis reveals that HNEPCM begins melting at 41°C–42°C, whereas NEPCM exhibits its lowest endothermic peak at 45°C, with complete melting occurring within the 42°C–43°C range. These findings highlight the enhanced thermal performance of MWCNT-based NEPCM over hybrid CuO–Al<sub>2</sub>O<sub>3</sub> HNEPCM, offering valuable insights into optimizing phase change materials (PCM) for efficient TES applications.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用T-history法和差示扫描量热法(DSC)系统地评价了纳米增强型PCM (NEPCM)和混合纳米增强型PCM (HNEPCM)的热物理性质。此外,它检查和比较努塞尔数和传热系数的热能储存(TES)系统纳入NEPCM和HNEPCM。研究结果显示,从T-history方法和DSC分析中获得的潜热、比热和相变温度之间存在很强的相关性,证实了定制T-history设置的准确性和可靠性。NEPCM的平均热容比HNEPCM高9.56%。热导率分析表明,NEPCM表现出更好的性能,固体和液体分别为0.2135 W/m K和0.2018 W/m K,而HNEPCM分别为0.197和0.1802 W/m K。值得注意的是,与HNEPCM相比,1% v/v mwcnts基NEPCM的热传导效率提高了8.37%。NEPCM的熔合焓比0.05% v/v CuO和0.05% v/v Al2O3杂化纳米粒子基HNEPCM高4.71%,传热系数比NEPCM低24.21%。DSC分析显示,HNEPCM在41°C - 42°C时开始融化,而NEPCM在45°C时表现出最低的吸热峰值,在42°C - 43°C范围内完全融化。这些发现强调了基于mwcnt的NEPCM比混合CuO-Al2O3 HNEPCM的热性能更好,为优化相变材料(PCM)以实现高效TES应用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Analysis of Solidification in MWCNT and Hybrid Nanoparticle-Enhanced Eutectic PCMs Using T-History and DSC Methods

This study systematically evaluates the thermophysical properties of Nano-Enhanced PCM (NEPCM) and Hybrid Nano-Enhanced PCM (HNEPCM) using both the T-history method and Differential Scanning Calorimetry (DSC). Additionally, it examines and compares the Nusselt number and heat transfer coefficient in thermal energy storage (TES) systems incorporating NEPCM and HNEPCM. The findings reveal a strong correlation between latent heat, specific heat, and phase transition temperatures obtained from the T-history method and DSC analysis, confirming the accuracy and reliability of the custom T-history setup. The average heat capacity of NEPCM was 9.56% higher than that of HNEPCM. Thermal conductivity analysis reveals that NEPCM exhibits superior performance, with values of 0.2135 W/m K (solid) and 0.2018 W/m K (liquid), whereas HNEPCM records 0.197 and 0.1802 W/m K, respectively. Notably, 1% v/v MWCNT-based NEPCM enhances heat conduction efficiency by 8.37% compared to HNEPCM. The enthalpy of fusion for NEPCM was also 4.71% higher than that of 0.05% v/v CuO and 0.05% v/v Al2O3 hybrid nanoparticle-based HNEPCM, which exhibited a 24.21% lower heat transfer coefficient than NEPCM. DSC analysis reveals that HNEPCM begins melting at 41°C–42°C, whereas NEPCM exhibits its lowest endothermic peak at 45°C, with complete melting occurring within the 42°C–43°C range. These findings highlight the enhanced thermal performance of MWCNT-based NEPCM over hybrid CuO–Al2O3 HNEPCM, offering valuable insights into optimizing phase change materials (PCM) for efficient TES applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信