Pamela Sepúlveda, Jonathan Suazo-Hernández, Lizethly Cáceres-Jensen, María de la Luz Mora, Juliano Denardin, Alejandra García-García, Pablo Cornejo and Binoy Sarkar
{"title":"掺杂镍和钯的氧化铁纳米吸附剂用于水中除磷†","authors":"Pamela Sepúlveda, Jonathan Suazo-Hernández, Lizethly Cáceres-Jensen, María de la Luz Mora, Juliano Denardin, Alejandra García-García, Pablo Cornejo and Binoy Sarkar","doi":"10.1039/D5RA02256H","DOIUrl":null,"url":null,"abstract":"<p >Excessive phosphorus (P) in surface and ground water can cause serious environmental issues. This study aims to synthesize and characterize novel iron oxides (Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>) nanoparticles (NPs) with and without Ni and Ni–Pd doping and unravel the NPs' performance and mechanism for P removal from water. X-ray diffraction, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy results confirmed successful doping of Ni and Ni–Pd on Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> NPs. Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni NPs exhibited a higher specific surface area and isoelectric point than Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd NPs. The kinetic data for P adsorption on Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> NPs fitted to the pseudo-first order model and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd NPs fitted to the pseudo-second order model. Adsorption isotherm data for Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> NPs fitted to the Freundlich model and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd NPs fitted to the Langmuir model. The maximum P adsorption capacity was the highest for Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni (35.66 mg g<small><sup>−1</sup></small>) followed by Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd (30.73 mg g<small><sup>−1</sup></small>) and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> NPs (21.97 mg g<small><sup>−1</sup></small>), which was opposite to the P desorption order of these adsorbents. The adsorption and characterization analysis suggested that inner-sphere complexes and co-precipitation were the key mechanisms for P adsorption on Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd NPs. Therefore, Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni NPs were a highly effective adsorbent for removing P from water.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 32","pages":" 26321-26337"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02256h?page=search","citationCount":"0","resultStr":"{\"title\":\"Iron oxide nano-adsorbent doped with nickel and palladium for phosphorus removal from water†\",\"authors\":\"Pamela Sepúlveda, Jonathan Suazo-Hernández, Lizethly Cáceres-Jensen, María de la Luz Mora, Juliano Denardin, Alejandra García-García, Pablo Cornejo and Binoy Sarkar\",\"doi\":\"10.1039/D5RA02256H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Excessive phosphorus (P) in surface and ground water can cause serious environmental issues. This study aims to synthesize and characterize novel iron oxides (Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>) nanoparticles (NPs) with and without Ni and Ni–Pd doping and unravel the NPs' performance and mechanism for P removal from water. X-ray diffraction, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy results confirmed successful doping of Ni and Ni–Pd on Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> NPs. Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni NPs exhibited a higher specific surface area and isoelectric point than Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd NPs. The kinetic data for P adsorption on Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> NPs fitted to the pseudo-first order model and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd NPs fitted to the pseudo-second order model. Adsorption isotherm data for Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> NPs fitted to the Freundlich model and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd NPs fitted to the Langmuir model. The maximum P adsorption capacity was the highest for Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni (35.66 mg g<small><sup>−1</sup></small>) followed by Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd (30.73 mg g<small><sup>−1</sup></small>) and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> NPs (21.97 mg g<small><sup>−1</sup></small>), which was opposite to the P desorption order of these adsorbents. The adsorption and characterization analysis suggested that inner-sphere complexes and co-precipitation were the key mechanisms for P adsorption on Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni and Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni–Pd NPs. Therefore, Fe<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>–Ni NPs were a highly effective adsorbent for removing P from water.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 32\",\"pages\":\" 26321-26337\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra02256h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02256h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra02256h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
地表水和地下水中磷含量过高会造成严重的环境问题。本研究旨在合成和表征掺杂和不掺杂Ni和Ni - pd的新型氧化铁(FexOy)纳米颗粒(NPs),并揭示NPs去除水中P的性能和机制。x射线衍射、能量色散x射线能谱和x射线光电子能谱结果证实了Ni和Ni - pd在FexOy NPs上的成功掺杂。FexOy - ni NPs比FexOy和FexOy - ni - pd NPs具有更高的比表面积和等电点。FexOy NPs吸附P的动力学数据符合准一级模型,FexOy - ni和FexOy - ni - pd NPs的动力学数据符合准二级模型。FexOy NPs的吸附等温线数据符合Freundlich模型,FexOy - ni和FexOy - ni - pd NPs的吸附等温线数据符合Langmuir模型。feexoy - ni对P的最大吸附量为35.66 mg g−1,其次为feexoy - ni - pd (30.73 mg g−1)和FexOy NPs (21.97 mg g−1),与这些吸附剂对P的解吸顺序相反。吸附和表征分析表明,球内配合物和共沉淀是磷在FexOy-Ni和FexOy-Ni - pd NPs上吸附的关键机制。因此,feexoy - ni NPs是一种高效的水中磷吸附剂。
Iron oxide nano-adsorbent doped with nickel and palladium for phosphorus removal from water†
Excessive phosphorus (P) in surface and ground water can cause serious environmental issues. This study aims to synthesize and characterize novel iron oxides (FexOy) nanoparticles (NPs) with and without Ni and Ni–Pd doping and unravel the NPs' performance and mechanism for P removal from water. X-ray diffraction, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy results confirmed successful doping of Ni and Ni–Pd on FexOy NPs. FexOy–Ni NPs exhibited a higher specific surface area and isoelectric point than FexOy and FexOy–Ni–Pd NPs. The kinetic data for P adsorption on FexOy NPs fitted to the pseudo-first order model and FexOy–Ni and FexOy–Ni–Pd NPs fitted to the pseudo-second order model. Adsorption isotherm data for FexOy NPs fitted to the Freundlich model and FexOy–Ni and FexOy–Ni–Pd NPs fitted to the Langmuir model. The maximum P adsorption capacity was the highest for FexOy–Ni (35.66 mg g−1) followed by FexOy–Ni–Pd (30.73 mg g−1) and FexOy NPs (21.97 mg g−1), which was opposite to the P desorption order of these adsorbents. The adsorption and characterization analysis suggested that inner-sphere complexes and co-precipitation were the key mechanisms for P adsorption on FexOy–Ni and FexOy–Ni–Pd NPs. Therefore, FexOy–Ni NPs were a highly effective adsorbent for removing P from water.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.