{"title":"HPN-SpGEMM: Hybrid PIM-NMP for SpGEMM","authors":"Kwangrae Kim;Ki-Seok Chung","doi":"10.1109/LCA.2025.3583758","DOIUrl":null,"url":null,"abstract":"Sparse matrix-matrix multiplication (SpGEMM) is widely used in various scientific computing applications. However, the performance of SpGEMM is typically bound by memory performance due to irregular access patterns. Prior accelerators leveraging high-bandwidth memory (HBM) with optimized data flows still face limitations in handling sparse matrices with varying sizes and sparsity levels. We propose HPN-SpGEMM, a hybrid architecture that employs both processing-in-memory (PIM) cores inside bank groups and near-memory-processing (NMP) cores in the logic die of an HBM memory. To the best of our knowledge, this is the first hybrid architecture for SpGEMM that leverages both PIM cores and NMP cores. Evaluation results demonstrate significant performance gains, effectively overcoming memory-bound constraints.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 2","pages":"209-212"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11053658/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Sparse matrix-matrix multiplication (SpGEMM) is widely used in various scientific computing applications. However, the performance of SpGEMM is typically bound by memory performance due to irregular access patterns. Prior accelerators leveraging high-bandwidth memory (HBM) with optimized data flows still face limitations in handling sparse matrices with varying sizes and sparsity levels. We propose HPN-SpGEMM, a hybrid architecture that employs both processing-in-memory (PIM) cores inside bank groups and near-memory-processing (NMP) cores in the logic die of an HBM memory. To the best of our knowledge, this is the first hybrid architecture for SpGEMM that leverages both PIM cores and NMP cores. Evaluation results demonstrate significant performance gains, effectively overcoming memory-bound constraints.
期刊介绍:
IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.