IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Kwangrae Kim;Ki-Seok Chung
{"title":"HPN-SpGEMM: Hybrid PIM-NMP for SpGEMM","authors":"Kwangrae Kim;Ki-Seok Chung","doi":"10.1109/LCA.2025.3583758","DOIUrl":null,"url":null,"abstract":"Sparse matrix-matrix multiplication (SpGEMM) is widely used in various scientific computing applications. However, the performance of SpGEMM is typically bound by memory performance due to irregular access patterns. Prior accelerators leveraging high-bandwidth memory (HBM) with optimized data flows still face limitations in handling sparse matrices with varying sizes and sparsity levels. We propose HPN-SpGEMM, a hybrid architecture that employs both processing-in-memory (PIM) cores inside bank groups and near-memory-processing (NMP) cores in the logic die of an HBM memory. To the best of our knowledge, this is the first hybrid architecture for SpGEMM that leverages both PIM cores and NMP cores. Evaluation results demonstrate significant performance gains, effectively overcoming memory-bound constraints.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 2","pages":"209-212"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11053658/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

稀疏矩阵-矩阵乘法(SpGEMM)广泛应用于各种科学计算应用。然而,由于不规则的访问模式,SpGEMM的性能通常受到内存性能的限制。先前利用高带宽内存(HBM)和优化数据流的加速器在处理具有不同大小和稀疏度级别的稀疏矩阵时仍然面临限制。我们提出了HPN-SpGEMM,这是一种混合架构,在银行组内使用内存中处理(PIM)内核,在HBM存储器的逻辑芯片中使用近内存处理(NMP)内核。据我们所知,这是SpGEMM的第一个混合架构,它利用了PIM内核和NMP内核。评估结果显示了显著的性能提升,有效地克服了内存约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HPN-SpGEMM: Hybrid PIM-NMP for SpGEMM
Sparse matrix-matrix multiplication (SpGEMM) is widely used in various scientific computing applications. However, the performance of SpGEMM is typically bound by memory performance due to irregular access patterns. Prior accelerators leveraging high-bandwidth memory (HBM) with optimized data flows still face limitations in handling sparse matrices with varying sizes and sparsity levels. We propose HPN-SpGEMM, a hybrid architecture that employs both processing-in-memory (PIM) cores inside bank groups and near-memory-processing (NMP) cores in the logic die of an HBM memory. To the best of our knowledge, this is the first hybrid architecture for SpGEMM that leverages both PIM cores and NMP cores. Evaluation results demonstrate significant performance gains, effectively overcoming memory-bound constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信