V. Torrelli;M. C. G. Alasio;M. D'Alessandro;A. Gullino;L. Miri;J. Lindner;S. Gronenborn;M. Goano;P. Debernardi
{"title":"大功率单模相耦合线性VCSEL阵列的自热建模","authors":"V. Torrelli;M. C. G. Alasio;M. D'Alessandro;A. Gullino;L. Miri;J. Lindner;S. Gronenborn;M. Goano;P. Debernardi","doi":"10.1109/JPHOT.2025.3587464","DOIUrl":null,"url":null,"abstract":"We investigate the robustness of single-mode (SM) emission in high-power, large-area rectangular vertical-cavity surface-emitting lasers (VCSELs), emphasizing the impact of self-heating effects. Compared to circular geometries, large-area rectangular VCSELs provide improved heat dissipation thanks to their high geometrical aspect ratio, and higher SM output power by means of their patterned reflectivity obtainable by an array of grating reliefs. Self-heating alters the refractive index of the device. We demonstrate, experimentally and numerically, how the related thermal lensing affects the transverse modes. By misaligning the antinodes of the promoted lasing mode and the surface reliefs, self-heating degrades SM operation if not properly accounted for in the relief position design. Combining thermal and optical models, we propose numerically optimized grating relief geometries ensuring robust SM emission across varying operating temperatures.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 4","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11074750","citationCount":"0","resultStr":"{\"title\":\"Modeling Self-Heating in High-Power Single-Mode Phase-Coupled Linear VCSEL Arrays\",\"authors\":\"V. Torrelli;M. C. G. Alasio;M. D'Alessandro;A. Gullino;L. Miri;J. Lindner;S. Gronenborn;M. Goano;P. Debernardi\",\"doi\":\"10.1109/JPHOT.2025.3587464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the robustness of single-mode (SM) emission in high-power, large-area rectangular vertical-cavity surface-emitting lasers (VCSELs), emphasizing the impact of self-heating effects. Compared to circular geometries, large-area rectangular VCSELs provide improved heat dissipation thanks to their high geometrical aspect ratio, and higher SM output power by means of their patterned reflectivity obtainable by an array of grating reliefs. Self-heating alters the refractive index of the device. We demonstrate, experimentally and numerically, how the related thermal lensing affects the transverse modes. By misaligning the antinodes of the promoted lasing mode and the surface reliefs, self-heating degrades SM operation if not properly accounted for in the relief position design. Combining thermal and optical models, we propose numerically optimized grating relief geometries ensuring robust SM emission across varying operating temperatures.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 4\",\"pages\":\"1-7\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11074750\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11074750/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11074750/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Modeling Self-Heating in High-Power Single-Mode Phase-Coupled Linear VCSEL Arrays
We investigate the robustness of single-mode (SM) emission in high-power, large-area rectangular vertical-cavity surface-emitting lasers (VCSELs), emphasizing the impact of self-heating effects. Compared to circular geometries, large-area rectangular VCSELs provide improved heat dissipation thanks to their high geometrical aspect ratio, and higher SM output power by means of their patterned reflectivity obtainable by an array of grating reliefs. Self-heating alters the refractive index of the device. We demonstrate, experimentally and numerically, how the related thermal lensing affects the transverse modes. By misaligning the antinodes of the promoted lasing mode and the surface reliefs, self-heating degrades SM operation if not properly accounted for in the relief position design. Combining thermal and optical models, we propose numerically optimized grating relief geometries ensuring robust SM emission across varying operating temperatures.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.