两两稳定网络图的解结性&网络动力学

IF 1 4区 经济学 Q3 ECONOMICS
Julien Fixary
{"title":"两两稳定网络图的解结性&网络动力学","authors":"Julien Fixary","doi":"10.1016/j.jmateco.2025.103155","DOIUrl":null,"url":null,"abstract":"<div><div>We extend Bich–Fixary’s topological structure theorem about graphs of pairwise stable networks. Specifically, we show that certain graphs of pairwise stable networks are not only homeomorphic to their underlying space of societies but are, in fact, ambient isotopic to a trivial copy of this space. This result aligns with Demichelis–Germano’s unknottedness theorem and Predtetchinski’s unknottedness theorem. Furthermore, we introduce the notion of network dynamics which refers to families of vector fields on the set of weighted networks whose zeros correspond to pairwise stable networks. We leverage our version of the unknottedness theorem to demonstrate that most network dynamics can be continuously connected to one another without introducing additional zeros. Finally, we show that this result has a significant consequence on the indices of these network dynamics at any pairwise stable network — a concept that we connect to genericity using Bich–Fixary’s oddness theorem.</div></div>","PeriodicalId":50145,"journal":{"name":"Journal of Mathematical Economics","volume":"120 ","pages":"Article 103155"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unknottedness of graphs of pairwise stable networks & network dynamics\",\"authors\":\"Julien Fixary\",\"doi\":\"10.1016/j.jmateco.2025.103155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We extend Bich–Fixary’s topological structure theorem about graphs of pairwise stable networks. Specifically, we show that certain graphs of pairwise stable networks are not only homeomorphic to their underlying space of societies but are, in fact, ambient isotopic to a trivial copy of this space. This result aligns with Demichelis–Germano’s unknottedness theorem and Predtetchinski’s unknottedness theorem. Furthermore, we introduce the notion of network dynamics which refers to families of vector fields on the set of weighted networks whose zeros correspond to pairwise stable networks. We leverage our version of the unknottedness theorem to demonstrate that most network dynamics can be continuously connected to one another without introducing additional zeros. Finally, we show that this result has a significant consequence on the indices of these network dynamics at any pairwise stable network — a concept that we connect to genericity using Bich–Fixary’s oddness theorem.</div></div>\",\"PeriodicalId\":50145,\"journal\":{\"name\":\"Journal of Mathematical Economics\",\"volume\":\"120 \",\"pages\":\"Article 103155\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304406825000722\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304406825000722","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

推广了双稳定网络图的Bich-Fixary拓扑结构定理。具体地说,我们证明了某些两两稳定网络的图不仅与其底层社会空间同胚,而且实际上是该空间的一个平凡副本的环境同位素。这个结果与Demichelis-Germano的不打结定理和Predtetchinski的不打结定理是一致的。进一步,我们引入了网络动力学的概念,它是指零对应于成对稳定网络的加权网络集合上的向量场族。我们利用我们的解结定理版本来证明大多数网络动态可以在不引入额外零的情况下彼此连续连接。最后,我们证明了这一结果对任何两两稳定网络的动力学指标都有显著的影响——我们使用Bich-Fixary的奇度定理将这一概念与泛型联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unknottedness of graphs of pairwise stable networks & network dynamics
We extend Bich–Fixary’s topological structure theorem about graphs of pairwise stable networks. Specifically, we show that certain graphs of pairwise stable networks are not only homeomorphic to their underlying space of societies but are, in fact, ambient isotopic to a trivial copy of this space. This result aligns with Demichelis–Germano’s unknottedness theorem and Predtetchinski’s unknottedness theorem. Furthermore, we introduce the notion of network dynamics which refers to families of vector fields on the set of weighted networks whose zeros correspond to pairwise stable networks. We leverage our version of the unknottedness theorem to demonstrate that most network dynamics can be continuously connected to one another without introducing additional zeros. Finally, we show that this result has a significant consequence on the indices of these network dynamics at any pairwise stable network — a concept that we connect to genericity using Bich–Fixary’s oddness theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Economics
Journal of Mathematical Economics 管理科学-数学跨学科应用
CiteScore
1.70
自引率
7.70%
发文量
73
审稿时长
12.5 weeks
期刊介绍: The primary objective of the Journal is to provide a forum for work in economic theory which expresses economic ideas using formal mathematical reasoning. For work to add to this primary objective, it is not sufficient that the mathematical reasoning be new and correct. The work must have real economic content. The economic ideas must be interesting and important. These ideas may pertain to any field of economics or any school of economic thought.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信