{"title":"具有三对角Moore-Penrose逆的三对角m矩阵","authors":"M.I. Bueno , Susana Furtado , K. Kranthi Priya , K.C. Sivakumar","doi":"10.1016/j.amc.2025.129640","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we characterize the singular tridiagonal <em>M</em>-matrices whose Moore-Penrose inverse is tridiagonal, extending the recent result (Barreras and Peña, 2019) describing the nonsingular tridiagonal M-matrices whose inverse is tridiagonal.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"508 ","pages":"Article 129640"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tridiagonal M-matrices with tridiagonal Moore-Penrose inverse\",\"authors\":\"M.I. Bueno , Susana Furtado , K. Kranthi Priya , K.C. Sivakumar\",\"doi\":\"10.1016/j.amc.2025.129640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we characterize the singular tridiagonal <em>M</em>-matrices whose Moore-Penrose inverse is tridiagonal, extending the recent result (Barreras and Peña, 2019) describing the nonsingular tridiagonal M-matrices whose inverse is tridiagonal.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"508 \",\"pages\":\"Article 129640\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325003662\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003662","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们刻画了Moore-Penrose逆为三对角的奇异三对角m矩阵,扩展了最近(Barreras and Peña, 2019)描述逆为三对角的非奇异三对角m矩阵的结果。
Tridiagonal M-matrices with tridiagonal Moore-Penrose inverse
In this paper, we characterize the singular tridiagonal M-matrices whose Moore-Penrose inverse is tridiagonal, extending the recent result (Barreras and Peña, 2019) describing the nonsingular tridiagonal M-matrices whose inverse is tridiagonal.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.