Abdul Malik Sultan , Manahil Ali , Shamaila Rani , Nadeem Azhar , N. Myrzakulov , Sanjar Shaymatov
{"title":"在f(T,B,TG,BG)重力下约束大爆炸核合成","authors":"Abdul Malik Sultan , Manahil Ali , Shamaila Rani , Nadeem Azhar , N. Myrzakulov , Sanjar Shaymatov","doi":"10.1016/j.nuclphysb.2025.117023","DOIUrl":null,"url":null,"abstract":"<div><div>Big Bang nucleosynthes describes a significant process in the early universe, responsible for the formation of light nuclei a while after the Big Bang explosion. Its sensitivity to the expansion rate makes BBN an effective probe for testing deviations from standard cosmology, particularly within the framework of modified theories of gravity. In this article, we investigate the evolution of the Universe through Big Bang nucleosynthesis within the framework of <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> gravity. Here, <span><math><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> correspond to the torsion, boundary term, teleparallel Gauss-Bonnet term, and Gauss-Bonnet boundary term, respectively. To explore the deviation from the teleparallel equivalent of general relativity, we apply the transformation <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> = <span><math><mo>−</mo><mi>T</mi><mo>+</mo><mi>F</mi><mo>(</mo><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span>. For an in-depth analysis of the Big Bang nucleosynthesis, we choose five distinct models from gravity and compared the results with the observational limits on <span><math><mo>|</mo><mfrac><mrow><mi>Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></mfrac><mo>|</mo></math></span> to examine restrictions on the free parameters associated with these models. Our outcomes indicate that <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> gravity can agree with the constraint of big bang nucleosynthesis, and hence build a valid view of the universe. Moreover, we take the limiting cases of the assumed theory, that is, <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> theories, which also ensure consistency with BBN data.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117023"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraining Big Bang nucleosynthesis in f(T,B,TG,BG) gravity\",\"authors\":\"Abdul Malik Sultan , Manahil Ali , Shamaila Rani , Nadeem Azhar , N. Myrzakulov , Sanjar Shaymatov\",\"doi\":\"10.1016/j.nuclphysb.2025.117023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Big Bang nucleosynthes describes a significant process in the early universe, responsible for the formation of light nuclei a while after the Big Bang explosion. Its sensitivity to the expansion rate makes BBN an effective probe for testing deviations from standard cosmology, particularly within the framework of modified theories of gravity. In this article, we investigate the evolution of the Universe through Big Bang nucleosynthesis within the framework of <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> gravity. Here, <span><math><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> correspond to the torsion, boundary term, teleparallel Gauss-Bonnet term, and Gauss-Bonnet boundary term, respectively. To explore the deviation from the teleparallel equivalent of general relativity, we apply the transformation <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> = <span><math><mo>−</mo><mi>T</mi><mo>+</mo><mi>F</mi><mo>(</mo><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span>. For an in-depth analysis of the Big Bang nucleosynthesis, we choose five distinct models from gravity and compared the results with the observational limits on <span><math><mo>|</mo><mfrac><mrow><mi>Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></mfrac><mo>|</mo></math></span> to examine restrictions on the free parameters associated with these models. Our outcomes indicate that <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>,</mo><mspace></mspace><mi>B</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>T</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>,</mo><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></math></span> gravity can agree with the constraint of big bang nucleosynthesis, and hence build a valid view of the universe. Moreover, we take the limiting cases of the assumed theory, that is, <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> theories, which also ensure consistency with BBN data.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1018 \",\"pages\":\"Article 117023\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321325002329\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002329","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Constraining Big Bang nucleosynthesis in f(T,B,TG,BG) gravity
Big Bang nucleosynthes describes a significant process in the early universe, responsible for the formation of light nuclei a while after the Big Bang explosion. Its sensitivity to the expansion rate makes BBN an effective probe for testing deviations from standard cosmology, particularly within the framework of modified theories of gravity. In this article, we investigate the evolution of the Universe through Big Bang nucleosynthesis within the framework of gravity. Here, and correspond to the torsion, boundary term, teleparallel Gauss-Bonnet term, and Gauss-Bonnet boundary term, respectively. To explore the deviation from the teleparallel equivalent of general relativity, we apply the transformation = . For an in-depth analysis of the Big Bang nucleosynthesis, we choose five distinct models from gravity and compared the results with the observational limits on to examine restrictions on the free parameters associated with these models. Our outcomes indicate that gravity can agree with the constraint of big bang nucleosynthesis, and hence build a valid view of the universe. Moreover, we take the limiting cases of the assumed theory, that is, and theories, which also ensure consistency with BBN data.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.