Bo Guo , Hui Yang , Chunyu Zhu , Ying Guo , Yuhan Zhao , Jiansheng Cao , Yanjun Shen
{"title":"太行山区产水量动态及其驱动力评价","authors":"Bo Guo , Hui Yang , Chunyu Zhu , Ying Guo , Yuhan Zhao , Jiansheng Cao , Yanjun Shen","doi":"10.1016/j.ecolind.2025.113923","DOIUrl":null,"url":null,"abstract":"<div><div>Water yield (WY) is a critical indicator of water availability, playing a significant role in sustaining ecosystem stability. Understanding the factors influencing water yield is crucial for effective regional water resource management and the long-term sustainability of ecosystems. However, the dynamics of water yield and the driving mechanisms in the Taihang Mountain Region (TMR), particularly the influence of extreme precipitation, remain insufficiently understood. In this study, we employed the InVEST model to analyze water yield dynamics across the TMR. We introduced an analytical framework that integrates detrending analysis with scenario-based simulation to investigate the contributions of climate change (CC) and land use and land cover change (LUCC) to water yield. Furthermore, we applied the optimal parameters-based geographical detector (OPGD) to examine the influence of precipitation characteristics on water yield. We found that water yield in the TMR exhibited a decreasing trend of −0.66 mm/yr from 1990 to 2020. Significant spatial heterogeneity was observed in water yield changes, with notable decreases predominantly distributed in the eastern slope of the TMR. CC and LUCC contributed 86.46 % and 13.54 % to water yield variation, respectively. Our findings revealed that changes in water yield in the TMR are strongly influenced by precipitation patterns, with precipitation trends and extreme precipitation serving as the primary drivers. Notably, in areas experiencing significant water yield decline, precipitation intensity plays a more dominant role than precipitation trends. Afforestation areas exhibited a significantly higher decline in water yield than non-afforestation regions from 1990 to 2020. These findings provide valuable insights for guiding afforestation projects in TMR.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"178 ","pages":"Article 113923"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating dynamics of water yield and its driving forces in the Taihang Mountain Region, China\",\"authors\":\"Bo Guo , Hui Yang , Chunyu Zhu , Ying Guo , Yuhan Zhao , Jiansheng Cao , Yanjun Shen\",\"doi\":\"10.1016/j.ecolind.2025.113923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water yield (WY) is a critical indicator of water availability, playing a significant role in sustaining ecosystem stability. Understanding the factors influencing water yield is crucial for effective regional water resource management and the long-term sustainability of ecosystems. However, the dynamics of water yield and the driving mechanisms in the Taihang Mountain Region (TMR), particularly the influence of extreme precipitation, remain insufficiently understood. In this study, we employed the InVEST model to analyze water yield dynamics across the TMR. We introduced an analytical framework that integrates detrending analysis with scenario-based simulation to investigate the contributions of climate change (CC) and land use and land cover change (LUCC) to water yield. Furthermore, we applied the optimal parameters-based geographical detector (OPGD) to examine the influence of precipitation characteristics on water yield. We found that water yield in the TMR exhibited a decreasing trend of −0.66 mm/yr from 1990 to 2020. Significant spatial heterogeneity was observed in water yield changes, with notable decreases predominantly distributed in the eastern slope of the TMR. CC and LUCC contributed 86.46 % and 13.54 % to water yield variation, respectively. Our findings revealed that changes in water yield in the TMR are strongly influenced by precipitation patterns, with precipitation trends and extreme precipitation serving as the primary drivers. Notably, in areas experiencing significant water yield decline, precipitation intensity plays a more dominant role than precipitation trends. Afforestation areas exhibited a significantly higher decline in water yield than non-afforestation regions from 1990 to 2020. These findings provide valuable insights for guiding afforestation projects in TMR.</div></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":\"178 \",\"pages\":\"Article 113923\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X25008532\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X25008532","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Evaluating dynamics of water yield and its driving forces in the Taihang Mountain Region, China
Water yield (WY) is a critical indicator of water availability, playing a significant role in sustaining ecosystem stability. Understanding the factors influencing water yield is crucial for effective regional water resource management and the long-term sustainability of ecosystems. However, the dynamics of water yield and the driving mechanisms in the Taihang Mountain Region (TMR), particularly the influence of extreme precipitation, remain insufficiently understood. In this study, we employed the InVEST model to analyze water yield dynamics across the TMR. We introduced an analytical framework that integrates detrending analysis with scenario-based simulation to investigate the contributions of climate change (CC) and land use and land cover change (LUCC) to water yield. Furthermore, we applied the optimal parameters-based geographical detector (OPGD) to examine the influence of precipitation characteristics on water yield. We found that water yield in the TMR exhibited a decreasing trend of −0.66 mm/yr from 1990 to 2020. Significant spatial heterogeneity was observed in water yield changes, with notable decreases predominantly distributed in the eastern slope of the TMR. CC and LUCC contributed 86.46 % and 13.54 % to water yield variation, respectively. Our findings revealed that changes in water yield in the TMR are strongly influenced by precipitation patterns, with precipitation trends and extreme precipitation serving as the primary drivers. Notably, in areas experiencing significant water yield decline, precipitation intensity plays a more dominant role than precipitation trends. Afforestation areas exhibited a significantly higher decline in water yield than non-afforestation regions from 1990 to 2020. These findings provide valuable insights for guiding afforestation projects in TMR.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.