来自信号“宇宙”的机器学习:特征工程的作用

IF 10.4 1区 经济学 Q1 BUSINESS, FINANCE
Bin Li , Alberto G. Rossi , Xuemin (Sterling) Yan , Lingling Zheng
{"title":"来自信号“宇宙”的机器学习:特征工程的作用","authors":"Bin Li ,&nbsp;Alberto G. Rossi ,&nbsp;Xuemin (Sterling) Yan ,&nbsp;Lingling Zheng","doi":"10.1016/j.jfineco.2025.104138","DOIUrl":null,"url":null,"abstract":"<div><div>We construct real-time machine learning strategies based on a “universe” of fundamental signals. The out-of-sample performance of these strategies is economically meaningful and statistically significant, but considerably weaker than those documented by prior studies that use curated sets of signals as predictors. Strategies based on a simple recursive ranking of each signal’s past performance also yield substantially better out-of-sample performance. We find qualitatively similar results when examining past-return-based signals. Our results underscore the key role of feature engineering and, more broadly, inductive biases in enhancing the economic benefits of machine learning investment strategies.</div></div>","PeriodicalId":51346,"journal":{"name":"Journal of Financial Economics","volume":"172 ","pages":"Article 104138"},"PeriodicalIF":10.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning from a “Universe” of signals: The role of feature engineering\",\"authors\":\"Bin Li ,&nbsp;Alberto G. Rossi ,&nbsp;Xuemin (Sterling) Yan ,&nbsp;Lingling Zheng\",\"doi\":\"10.1016/j.jfineco.2025.104138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct real-time machine learning strategies based on a “universe” of fundamental signals. The out-of-sample performance of these strategies is economically meaningful and statistically significant, but considerably weaker than those documented by prior studies that use curated sets of signals as predictors. Strategies based on a simple recursive ranking of each signal’s past performance also yield substantially better out-of-sample performance. We find qualitatively similar results when examining past-return-based signals. Our results underscore the key role of feature engineering and, more broadly, inductive biases in enhancing the economic benefits of machine learning investment strategies.</div></div>\",\"PeriodicalId\":51346,\"journal\":{\"name\":\"Journal of Financial Economics\",\"volume\":\"172 \",\"pages\":\"Article 104138\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304405X25001461\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304405X25001461","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们基于基本信号的“宇宙”构建实时机器学习策略。这些策略的样本外性能具有经济意义和统计学意义,但与先前使用精选信号集作为预测指标的研究相比,这些策略的表现要弱得多。基于每个信号过去性能的简单递归排序的策略也会产生更好的样本外性能。在检查基于过去回报的信号时,我们发现了定性相似的结果。我们的研究结果强调了特征工程的关键作用,更广泛地说,归纳偏差在提高机器学习投资策略的经济效益方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning from a “Universe” of signals: The role of feature engineering
We construct real-time machine learning strategies based on a “universe” of fundamental signals. The out-of-sample performance of these strategies is economically meaningful and statistically significant, but considerably weaker than those documented by prior studies that use curated sets of signals as predictors. Strategies based on a simple recursive ranking of each signal’s past performance also yield substantially better out-of-sample performance. We find qualitatively similar results when examining past-return-based signals. Our results underscore the key role of feature engineering and, more broadly, inductive biases in enhancing the economic benefits of machine learning investment strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.80
自引率
4.50%
发文量
192
审稿时长
37 days
期刊介绍: The Journal of Financial Economics provides a specialized forum for the publication of research in the area of financial economics and the theory of the firm, placing primary emphasis on the highest quality analytical, empirical, and clinical contributions in the following major areas: capital markets, financial institutions, corporate finance, corporate governance, and the economics of organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信