Yongzhen Wang , Jiayu Lin , Yibo Han , Kai Han , Juntao Han , Te Han , Yiming Wei
{"title":"综合评估数据中心中所有元素的灵活性资源:考虑计算、电和热的协同效益","authors":"Yongzhen Wang , Jiayu Lin , Yibo Han , Kai Han , Juntao Han , Te Han , Yiming Wei","doi":"10.1016/j.apenergy.2025.126442","DOIUrl":null,"url":null,"abstract":"<div><div>The exploration of internal resource flexibility in data centers is a significant trend for energy conservation, emission reduction, and sustainable development. To systematically quantify the coupling mechanisms and potential of flexibility in the computing, electricity, and heat side, this paper develops a multi-element flexibility resource evaluation method integrated capacity planning and operation scheduling for data centers. It reveals the impact of each flexibility resource on the data center's energy consumption, carbon emissions, economic costs, Power Usage Effectiveness (PUE), computing efficiency, and other integrated performance metrics. An optimization and scheduling framework for all-element flexibility resources is developed based on a collaborative operation model for flexibility resources established in this paper. The results show that the flexibility is able to reduce carbon emissions by 38.5 %, energy consumption by 22.8 %, and economic costs by 21.6 %, while significantly improving PUE and computing efficiency. In particular, the utilization of electricity flexibility notably reduces carbon emissions by 21.5 %, while the coordinated regulation of computing flexibility and heat flexibility has a significant effect on reducing energy consumption (by 11.1 % and 13.1 %, respectively). Furthermore, the impact of factors like time-of-use tariff, workload status, and rack occupancy rate on flexibility resource utilization is analyzed through sensitivity analysis, revealing how these factors influence the optimization of the data center's performance metrics.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"399 ","pages":"Article 126442"},"PeriodicalIF":11.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive evaluation of all-element flexibility resources in data centers: considering synergistic benefits of computing, electricity, and heat\",\"authors\":\"Yongzhen Wang , Jiayu Lin , Yibo Han , Kai Han , Juntao Han , Te Han , Yiming Wei\",\"doi\":\"10.1016/j.apenergy.2025.126442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The exploration of internal resource flexibility in data centers is a significant trend for energy conservation, emission reduction, and sustainable development. To systematically quantify the coupling mechanisms and potential of flexibility in the computing, electricity, and heat side, this paper develops a multi-element flexibility resource evaluation method integrated capacity planning and operation scheduling for data centers. It reveals the impact of each flexibility resource on the data center's energy consumption, carbon emissions, economic costs, Power Usage Effectiveness (PUE), computing efficiency, and other integrated performance metrics. An optimization and scheduling framework for all-element flexibility resources is developed based on a collaborative operation model for flexibility resources established in this paper. The results show that the flexibility is able to reduce carbon emissions by 38.5 %, energy consumption by 22.8 %, and economic costs by 21.6 %, while significantly improving PUE and computing efficiency. In particular, the utilization of electricity flexibility notably reduces carbon emissions by 21.5 %, while the coordinated regulation of computing flexibility and heat flexibility has a significant effect on reducing energy consumption (by 11.1 % and 13.1 %, respectively). Furthermore, the impact of factors like time-of-use tariff, workload status, and rack occupancy rate on flexibility resource utilization is analyzed through sensitivity analysis, revealing how these factors influence the optimization of the data center's performance metrics.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"399 \",\"pages\":\"Article 126442\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261925011729\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925011729","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Comprehensive evaluation of all-element flexibility resources in data centers: considering synergistic benefits of computing, electricity, and heat
The exploration of internal resource flexibility in data centers is a significant trend for energy conservation, emission reduction, and sustainable development. To systematically quantify the coupling mechanisms and potential of flexibility in the computing, electricity, and heat side, this paper develops a multi-element flexibility resource evaluation method integrated capacity planning and operation scheduling for data centers. It reveals the impact of each flexibility resource on the data center's energy consumption, carbon emissions, economic costs, Power Usage Effectiveness (PUE), computing efficiency, and other integrated performance metrics. An optimization and scheduling framework for all-element flexibility resources is developed based on a collaborative operation model for flexibility resources established in this paper. The results show that the flexibility is able to reduce carbon emissions by 38.5 %, energy consumption by 22.8 %, and economic costs by 21.6 %, while significantly improving PUE and computing efficiency. In particular, the utilization of electricity flexibility notably reduces carbon emissions by 21.5 %, while the coordinated regulation of computing flexibility and heat flexibility has a significant effect on reducing energy consumption (by 11.1 % and 13.1 %, respectively). Furthermore, the impact of factors like time-of-use tariff, workload status, and rack occupancy rate on flexibility resource utilization is analyzed through sensitivity analysis, revealing how these factors influence the optimization of the data center's performance metrics.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.