一种抑制高温热电模块热应力的新方法

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Hongrui Ren, Chunping Niu, Hailong He, Youqun Li, Tianyi Liu, Jingbo Gao, Yi Wu, Mingzhe Rong
{"title":"一种抑制高温热电模块热应力的新方法","authors":"Hongrui Ren,&nbsp;Chunping Niu,&nbsp;Hailong He,&nbsp;Youqun Li,&nbsp;Tianyi Liu,&nbsp;Jingbo Gao,&nbsp;Yi Wu,&nbsp;Mingzhe Rong","doi":"10.1016/j.jpowsour.2025.237948","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoelectric (TE) module enabling direct conversion of thermal energy into electrical energy, is characterized by its static operation, maintenance-free nature, and high reliability. It serves as a critical core component in high-temperature waste heat recovery systems and radioisotope TE generators. Half-Heusler (HH) alloy, with its excellent mechanical properties and high-temperature stability, holds potential for application in such modules. To ensure long-term stable operation of HH TE module under high temperatures, the selection of an appropriate diffusion barrier layer is essential. However, the introduction of the barrier layer intensifies thermal stress, leading to cracks on the TE legs. To address the thermal stress issue, this study proposes a novel method of filling the gaps between TE legs (FGT-Method) for thermal stress suppression. Simulations demonstrate that this approach improves the thermal stress distribution within the TE legs, reducing the maximum thermal stress to less than 70 % of that without the filler. Aging tests on TE module reveal that modules fabricated using the FGT-Method maintain stable TE leg resistance during aging, with only a slight decline in output performance. The filler effectively mitigates the impact of thermal stress in high-temperature TE module. This study provides valuable insights for the fabrication of high-temperature TE module.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"655 ","pages":"Article 237948"},"PeriodicalIF":7.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for suppressing thermal stress in high-temperature thermoelectric modules\",\"authors\":\"Hongrui Ren,&nbsp;Chunping Niu,&nbsp;Hailong He,&nbsp;Youqun Li,&nbsp;Tianyi Liu,&nbsp;Jingbo Gao,&nbsp;Yi Wu,&nbsp;Mingzhe Rong\",\"doi\":\"10.1016/j.jpowsour.2025.237948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermoelectric (TE) module enabling direct conversion of thermal energy into electrical energy, is characterized by its static operation, maintenance-free nature, and high reliability. It serves as a critical core component in high-temperature waste heat recovery systems and radioisotope TE generators. Half-Heusler (HH) alloy, with its excellent mechanical properties and high-temperature stability, holds potential for application in such modules. To ensure long-term stable operation of HH TE module under high temperatures, the selection of an appropriate diffusion barrier layer is essential. However, the introduction of the barrier layer intensifies thermal stress, leading to cracks on the TE legs. To address the thermal stress issue, this study proposes a novel method of filling the gaps between TE legs (FGT-Method) for thermal stress suppression. Simulations demonstrate that this approach improves the thermal stress distribution within the TE legs, reducing the maximum thermal stress to less than 70 % of that without the filler. Aging tests on TE module reveal that modules fabricated using the FGT-Method maintain stable TE leg resistance during aging, with only a slight decline in output performance. The filler effectively mitigates the impact of thermal stress in high-temperature TE module. This study provides valuable insights for the fabrication of high-temperature TE module.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"655 \",\"pages\":\"Article 237948\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775325017847\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325017847","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

热电模块将热能直接转换为电能,具有静态运行、免维护、可靠性高的特点。它是高温废热回收系统和放射性同位素TE发生器的关键核心部件。半赫斯勒(HH)合金具有优异的机械性能和高温稳定性,在此类模块中具有应用潜力。为了保证高温下HH TE模块的长期稳定运行,选择合适的扩散阻挡层至关重要。然而,阻挡层的引入加剧了热应力,导致TE支腿出现裂缝。为了解决热应力问题,本研究提出了一种填补TE腿间隙的新方法(FGT-Method)来抑制热应力。仿真结果表明,该方法改善了TE支腿内的热应力分布,将最大热应力降低到未填充时的70%以下。对TE模块的老化测试表明,使用fgt方法制造的模块在老化期间保持稳定的TE腿电阻,输出性能仅略有下降。在高温TE模块中,填料能有效缓解热应力的影响。本研究为高温TE模组的制作提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for suppressing thermal stress in high-temperature thermoelectric modules
Thermoelectric (TE) module enabling direct conversion of thermal energy into electrical energy, is characterized by its static operation, maintenance-free nature, and high reliability. It serves as a critical core component in high-temperature waste heat recovery systems and radioisotope TE generators. Half-Heusler (HH) alloy, with its excellent mechanical properties and high-temperature stability, holds potential for application in such modules. To ensure long-term stable operation of HH TE module under high temperatures, the selection of an appropriate diffusion barrier layer is essential. However, the introduction of the barrier layer intensifies thermal stress, leading to cracks on the TE legs. To address the thermal stress issue, this study proposes a novel method of filling the gaps between TE legs (FGT-Method) for thermal stress suppression. Simulations demonstrate that this approach improves the thermal stress distribution within the TE legs, reducing the maximum thermal stress to less than 70 % of that without the filler. Aging tests on TE module reveal that modules fabricated using the FGT-Method maintain stable TE leg resistance during aging, with only a slight decline in output performance. The filler effectively mitigates the impact of thermal stress in high-temperature TE module. This study provides valuable insights for the fabrication of high-temperature TE module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信