Giovanni Pintore , Marco Agus , Alberto Signoroni , Enrico Gobbetti
{"title":"dddd++:利用密度图一致性在室内环境中进行深度估计","authors":"Giovanni Pintore , Marco Agus , Alberto Signoroni , Enrico Gobbetti","doi":"10.1016/j.gmod.2025.101281","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a novel deep neural network designed for fast and structurally consistent monocular 360° depth estimation in indoor settings. Our model generates a spherical depth map from a single gravity-aligned or gravity-rectified equirectangular image, ensuring the predicted depth aligns with the typical depth distribution and structural features of cluttered indoor spaces, which are generally enclosed by walls, floors, and ceilings. By leveraging the distinctive vertical and horizontal patterns found in man-made indoor environments, we propose a streamlined network architecture that incorporates gravity-aligned feature flattening and specialized vision transformers. Through flattening, these transformers fully exploit the omnidirectional nature of the input without requiring patch segmentation or positional encoding. To further enhance structural consistency, we introduce a novel loss function that assesses density map consistency by projecting points from the predicted depth map onto a horizontal plane and a cylindrical proxy. This lightweight architecture requires fewer tunable parameters and computational resources than competing methods. Our comparative evaluation shows that our approach improves depth estimation accuracy while ensuring greater structural consistency compared to existing methods. For these reasons, it promises to be suitable for incorporation in real-time solutions, as well as a building block in more complex structural analysis and segmentation methods.</div></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"140 ","pages":"Article 101281"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDD++: Exploiting Density map consistency for Deep Depth estimation in indoor environments\",\"authors\":\"Giovanni Pintore , Marco Agus , Alberto Signoroni , Enrico Gobbetti\",\"doi\":\"10.1016/j.gmod.2025.101281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a novel deep neural network designed for fast and structurally consistent monocular 360° depth estimation in indoor settings. Our model generates a spherical depth map from a single gravity-aligned or gravity-rectified equirectangular image, ensuring the predicted depth aligns with the typical depth distribution and structural features of cluttered indoor spaces, which are generally enclosed by walls, floors, and ceilings. By leveraging the distinctive vertical and horizontal patterns found in man-made indoor environments, we propose a streamlined network architecture that incorporates gravity-aligned feature flattening and specialized vision transformers. Through flattening, these transformers fully exploit the omnidirectional nature of the input without requiring patch segmentation or positional encoding. To further enhance structural consistency, we introduce a novel loss function that assesses density map consistency by projecting points from the predicted depth map onto a horizontal plane and a cylindrical proxy. This lightweight architecture requires fewer tunable parameters and computational resources than competing methods. Our comparative evaluation shows that our approach improves depth estimation accuracy while ensuring greater structural consistency compared to existing methods. For these reasons, it promises to be suitable for incorporation in real-time solutions, as well as a building block in more complex structural analysis and segmentation methods.</div></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"140 \",\"pages\":\"Article 101281\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070325000281\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070325000281","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
DDD++: Exploiting Density map consistency for Deep Depth estimation in indoor environments
We introduce a novel deep neural network designed for fast and structurally consistent monocular 360° depth estimation in indoor settings. Our model generates a spherical depth map from a single gravity-aligned or gravity-rectified equirectangular image, ensuring the predicted depth aligns with the typical depth distribution and structural features of cluttered indoor spaces, which are generally enclosed by walls, floors, and ceilings. By leveraging the distinctive vertical and horizontal patterns found in man-made indoor environments, we propose a streamlined network architecture that incorporates gravity-aligned feature flattening and specialized vision transformers. Through flattening, these transformers fully exploit the omnidirectional nature of the input without requiring patch segmentation or positional encoding. To further enhance structural consistency, we introduce a novel loss function that assesses density map consistency by projecting points from the predicted depth map onto a horizontal plane and a cylindrical proxy. This lightweight architecture requires fewer tunable parameters and computational resources than competing methods. Our comparative evaluation shows that our approach improves depth estimation accuracy while ensuring greater structural consistency compared to existing methods. For these reasons, it promises to be suitable for incorporation in real-time solutions, as well as a building block in more complex structural analysis and segmentation methods.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.