保护元环境:基于机器学习的风险、信任和治理视角

Krishnashree Achuthan , Sasangan Ramanathan , Raghu Raman
{"title":"保护元环境:基于机器学习的风险、信任和治理视角","authors":"Krishnashree Achuthan ,&nbsp;Sasangan Ramanathan ,&nbsp;Raghu Raman","doi":"10.1016/j.jjimei.2025.100356","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid expansion of the metaverse presents significant cybersecurity and privacy challenges, requiring structured, data-driven analysis. This study applies the ADO-TCM framework and BERTopic modeling to examine drivers of cybersecurity risk, theoretical responses, and interdisciplinary research gaps. Using PRISMA guidelines, 86 peer-reviewed studies were analyzed to identify key antecedents—technological vulnerabilities, user behavior, regulatory fragmentation, economic incentives, and cultural factors—shaping decisions in compliance, deployment, and education. These, in turn, influence outcomes like trust, threat mitigation, and scalability. The review identifies five latent themes: secure identity, privacy, trust, governance, and AI’s role in shaping risk. The study maps diverse theoretical lenses—cognitive, behavioral, strategic, and technological—used to interpret immersive threats and decision-making in metaverse contexts. Contributing a novel, empirically grounded synthesis, this research advances the information management literature and proposes a forward-looking agenda focused on adaptive security, ethical AI, interoperability, regulatory convergence, and intelligent, user-centric architecture for immersive ecosystems.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"5 2","pages":"Article 100356"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Securing the metaverse: Machine learning–based perspectives on risk, trust, and governance\",\"authors\":\"Krishnashree Achuthan ,&nbsp;Sasangan Ramanathan ,&nbsp;Raghu Raman\",\"doi\":\"10.1016/j.jjimei.2025.100356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid expansion of the metaverse presents significant cybersecurity and privacy challenges, requiring structured, data-driven analysis. This study applies the ADO-TCM framework and BERTopic modeling to examine drivers of cybersecurity risk, theoretical responses, and interdisciplinary research gaps. Using PRISMA guidelines, 86 peer-reviewed studies were analyzed to identify key antecedents—technological vulnerabilities, user behavior, regulatory fragmentation, economic incentives, and cultural factors—shaping decisions in compliance, deployment, and education. These, in turn, influence outcomes like trust, threat mitigation, and scalability. The review identifies five latent themes: secure identity, privacy, trust, governance, and AI’s role in shaping risk. The study maps diverse theoretical lenses—cognitive, behavioral, strategic, and technological—used to interpret immersive threats and decision-making in metaverse contexts. Contributing a novel, empirically grounded synthesis, this research advances the information management literature and proposes a forward-looking agenda focused on adaptive security, ethical AI, interoperability, regulatory convergence, and intelligent, user-centric architecture for immersive ecosystems.</div></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"5 2\",\"pages\":\"Article 100356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096825000382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096825000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

元宇宙的快速扩张带来了重大的网络安全和隐私挑战,需要结构化的、数据驱动的分析。本研究应用ADO-TCM框架和BERTopic模型来研究网络安全风险的驱动因素、理论响应和跨学科研究差距。使用PRISMA指南,对86项同行评议研究进行了分析,以确定影响合规、部署和教育决策的关键因素——技术漏洞、用户行为、监管碎片化、经济激励和文化因素。这些反过来又会影响信任、威胁缓解和可伸缩性等结果。该报告确定了五个潜在主题:安全身份、隐私、信任、治理和人工智能在塑造风险方面的作用。该研究描绘了不同的理论视角——认知、行为、战略和技术——用于解释虚拟环境中的沉浸式威胁和决策。本研究贡献了一种新颖的、基于经验的综合,推进了信息管理文献,并提出了一个前瞻性议程,重点关注自适应安全、伦理人工智能、互操作性、监管融合以及沉浸式生态系统的智能、以用户为中心的架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Securing the metaverse: Machine learning–based perspectives on risk, trust, and governance
The rapid expansion of the metaverse presents significant cybersecurity and privacy challenges, requiring structured, data-driven analysis. This study applies the ADO-TCM framework and BERTopic modeling to examine drivers of cybersecurity risk, theoretical responses, and interdisciplinary research gaps. Using PRISMA guidelines, 86 peer-reviewed studies were analyzed to identify key antecedents—technological vulnerabilities, user behavior, regulatory fragmentation, economic incentives, and cultural factors—shaping decisions in compliance, deployment, and education. These, in turn, influence outcomes like trust, threat mitigation, and scalability. The review identifies five latent themes: secure identity, privacy, trust, governance, and AI’s role in shaping risk. The study maps diverse theoretical lenses—cognitive, behavioral, strategic, and technological—used to interpret immersive threats and decision-making in metaverse contexts. Contributing a novel, empirically grounded synthesis, this research advances the information management literature and proposes a forward-looking agenda focused on adaptive security, ethical AI, interoperability, regulatory convergence, and intelligent, user-centric architecture for immersive ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信