金属-半导体-金属(MSM)器件中的载流子输运机制综述

Razibur Rahman , Zulkar Naaen Turjo , Sheam Bin Sayhid
{"title":"金属-半导体-金属(MSM)器件中的载流子输运机制综述","authors":"Razibur Rahman ,&nbsp;Zulkar Naaen Turjo ,&nbsp;Sheam Bin Sayhid","doi":"10.1016/j.nxmate.2025.100917","DOIUrl":null,"url":null,"abstract":"<div><div>This review provides a comprehensive analysis of carrier transport mechanisms in Metal–semiconductor–metal (MSM) devices, with a focus on the distinctive charge transport behavior arising from their dual Metal–semiconductor interface configuration. While existing reviews, such as those on semiconductor nanostructures, have extensively explored carrier dynamics in individual nanowires, nanocrystals, and related nanoscale architectures with ohmic or single Schottky contacts, this work specifically addresses MSM structures characterized by dual Metal–semiconductor interface configuration. A diverse range of MSM structures are discussed, including those based on silicon carbide (SiC), gallium nitride (GaN), aluminum gallium nitride (Al<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>Ga<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>N), nitrogen-doped ZnO (ZnO:N), graphene, and tin dioxide (SnO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>), fabricated using different techniques such as RF sputtering, molecular beam epitaxy, and metal–organic chemical vapor deposition (MOCVD). Transport phenomena such as space charge limited conduction (SCLC), thermionic emission, thermionic field emission (TFE), Poole–Frenkel emission (PFE), and variable range hopping (VRH) are examined in relation to their contributions toward the nonlinear current–voltage (I–V) characteristics commonly exhibited in MSM devices. The study places strong emphasis on the extraction and physical interpretation of key parameters: SCLC exponent, trap density, and critical voltage in the SCLC regime; Schottky barrier height (<span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>) and ideality factor (<span><math><mi>n</mi></math></span>) in thermionic emission; energy parameters such as <span><math><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>00</mn></mrow></msub></math></span> in TFE; high-frequency dielectric constant (<span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) and trap ionization energy (<span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>) in PFE; and the characteristic temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) in VRH, which relates to the density and spatial distribution of localized states. By connecting these extracted quantities to trap dynamics, interface phenomena, and field effects, the review offers a structured framework for interpreting the nonlinearities observed in experimental I–V responses. This synthesis serves as a technically grounded reference for advancing the modeling, characterization, and design of MSM devices in emerging applications such as photodetection, gas sensing, high-power electronics, and transparent optoelectronics.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"9 ","pages":"Article 100917"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carrier transport mechanisms in metal-semiconductor-metal (MSM) devices: A review study\",\"authors\":\"Razibur Rahman ,&nbsp;Zulkar Naaen Turjo ,&nbsp;Sheam Bin Sayhid\",\"doi\":\"10.1016/j.nxmate.2025.100917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This review provides a comprehensive analysis of carrier transport mechanisms in Metal–semiconductor–metal (MSM) devices, with a focus on the distinctive charge transport behavior arising from their dual Metal–semiconductor interface configuration. While existing reviews, such as those on semiconductor nanostructures, have extensively explored carrier dynamics in individual nanowires, nanocrystals, and related nanoscale architectures with ohmic or single Schottky contacts, this work specifically addresses MSM structures characterized by dual Metal–semiconductor interface configuration. A diverse range of MSM structures are discussed, including those based on silicon carbide (SiC), gallium nitride (GaN), aluminum gallium nitride (Al<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span>Ga<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>N), nitrogen-doped ZnO (ZnO:N), graphene, and tin dioxide (SnO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>), fabricated using different techniques such as RF sputtering, molecular beam epitaxy, and metal–organic chemical vapor deposition (MOCVD). Transport phenomena such as space charge limited conduction (SCLC), thermionic emission, thermionic field emission (TFE), Poole–Frenkel emission (PFE), and variable range hopping (VRH) are examined in relation to their contributions toward the nonlinear current–voltage (I–V) characteristics commonly exhibited in MSM devices. The study places strong emphasis on the extraction and physical interpretation of key parameters: SCLC exponent, trap density, and critical voltage in the SCLC regime; Schottky barrier height (<span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>) and ideality factor (<span><math><mi>n</mi></math></span>) in thermionic emission; energy parameters such as <span><math><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> and <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>00</mn></mrow></msub></math></span> in TFE; high-frequency dielectric constant (<span><math><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) and trap ionization energy (<span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>) in PFE; and the characteristic temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) in VRH, which relates to the density and spatial distribution of localized states. By connecting these extracted quantities to trap dynamics, interface phenomena, and field effects, the review offers a structured framework for interpreting the nonlinearities observed in experimental I–V responses. This synthesis serves as a technically grounded reference for advancing the modeling, characterization, and design of MSM devices in emerging applications such as photodetection, gas sensing, high-power electronics, and transparent optoelectronics.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"9 \",\"pages\":\"Article 100917\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825004356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825004356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了金属-半导体-金属(MSM)器件中载流子输运机制的综合分析,重点讨论了其双金属-半导体界面结构所产生的独特电荷输运行为。虽然现有的评论,如半导体纳米结构,已经广泛地探索了单个纳米线、纳米晶体以及具有欧姆或单肖特基触点的相关纳米级结构中的载流子动力学,但这项工作专门研究了以双金属-半导体界面配置为特征的MSM结构。讨论了各种MSM结构,包括基于碳化硅(SiC)、氮化镓(GaN)、氮化镓铝(AlxGa1−xN)、氮掺杂ZnO (ZnO:N)、石墨烯和二氧化锡(SnO2)的MSM结构,这些结构采用不同的技术,如射频溅射、分子束外延和金属有机化学气相沉积(MOCVD)。研究了空间电荷限制传导(SCLC)、热离子发射、热离子场发射(TFE)、普尔-弗兰克尔发射(PFE)和变范围跳变(VRH)等输运现象对MSM器件中常见的非线性电流-电压(I-V)特性的影响。重点研究了关键参数的提取和物理解释:SCLC指数、陷阱密度和SCLC临界电压;热离子发射中的肖特基势垒高度(ΦB)和理想因子(n)能量参数如TFE中的i '和E00;PFE中的高频介电常数(ε s)和阱电离能(Φt);VRH的特征温度(T0)与局域态的密度和空间分布有关。通过将这些提取的量与阱动力学、界面现象和场效应联系起来,该综述为解释在实验I-V响应中观察到的非线性提供了一个结构化框架。该合成为推进MSM器件在新兴应用(如光探测、气体传感、高功率电子和透明光电子)中的建模、表征和设计提供了技术基础参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carrier transport mechanisms in metal-semiconductor-metal (MSM) devices: A review study
This review provides a comprehensive analysis of carrier transport mechanisms in Metal–semiconductor–metal (MSM) devices, with a focus on the distinctive charge transport behavior arising from their dual Metal–semiconductor interface configuration. While existing reviews, such as those on semiconductor nanostructures, have extensively explored carrier dynamics in individual nanowires, nanocrystals, and related nanoscale architectures with ohmic or single Schottky contacts, this work specifically addresses MSM structures characterized by dual Metal–semiconductor interface configuration. A diverse range of MSM structures are discussed, including those based on silicon carbide (SiC), gallium nitride (GaN), aluminum gallium nitride (AlxGa1xN), nitrogen-doped ZnO (ZnO:N), graphene, and tin dioxide (SnO2), fabricated using different techniques such as RF sputtering, molecular beam epitaxy, and metal–organic chemical vapor deposition (MOCVD). Transport phenomena such as space charge limited conduction (SCLC), thermionic emission, thermionic field emission (TFE), Poole–Frenkel emission (PFE), and variable range hopping (VRH) are examined in relation to their contributions toward the nonlinear current–voltage (I–V) characteristics commonly exhibited in MSM devices. The study places strong emphasis on the extraction and physical interpretation of key parameters: SCLC exponent, trap density, and critical voltage in the SCLC regime; Schottky barrier height (ΦB) and ideality factor (n) in thermionic emission; energy parameters such as ɛ and E00 in TFE; high-frequency dielectric constant (ɛs) and trap ionization energy (Φt) in PFE; and the characteristic temperature (T0) in VRH, which relates to the density and spatial distribution of localized states. By connecting these extracted quantities to trap dynamics, interface phenomena, and field effects, the review offers a structured framework for interpreting the nonlinearities observed in experimental I–V responses. This synthesis serves as a technically grounded reference for advancing the modeling, characterization, and design of MSM devices in emerging applications such as photodetection, gas sensing, high-power electronics, and transparent optoelectronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信