{"title":"在根际有一种类似多磷酸酶的酶催化长链多磷酸水解的证据","authors":"Natalie Toren , Ran Erel","doi":"10.1016/j.plaphy.2025.110263","DOIUrl":null,"url":null,"abstract":"<div><div>Polyphosphates (poly-Ps), composed of two or more phosphate units, become plant-available only after hydrolysis to orthophosphate (ortho-P). While microbial polyphosphatase enzymes are well documented, no evidence exists for extracellular poly-P-hydrolyzing enzymes secreted by plants into the rhizosphere. This study aimed to evaluate plant capacity to hydrolyze long-chain and cyclic poly-P forms and to identify extracellular hydrolytic activity.</div><div>Six plant species were grown in sterile media supplemented with either cyclic poly-P or ortho-P to assess their capacity to hydrolyze and utilize different P sources. Species varied markedly in their ability to use poly-P. Lettuce displayed poor growth, while pepper achieved biomass levels comparable to ortho-P, providing direct evidence of rhizospheric hydrolytic activity. Hydrolysis assays using intact tissues confirmed significantly higher activity in pepper roots compared to lettuce, with leaves showing the lowest activity in both species.</div><div>Protein extracts from pepper roots were assayed for enzymatic activity. Heat treatment eliminated hydrolysis, confirming enzymatic mediation. Liquid chromatography enabled the isolation of a ∼20 kDa protein exhibiting high poly-P hydrolytic activity, exceeding that of known plant phosphatases. Mass spectrometry of the active fraction identified a <em>Capsicum annuum</em> protein (STH-21) with no close bacterial homologs, supporting its plant origin. The active fraction showed strong poly-P hydrolysis, with efficiency declining as chain length increased.</div><div>This study provides the first evidence of a polyphosphatase-like enzyme in vascular plants. The discovery of an extracellular, root-derived enzyme capable of long-chain poly-P hydrolysis challenges the prevailing view that plants depend solely on soil microorganisms for hydrolyzation of complex poly-Ps.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"228 ","pages":"Article 110263"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence for a polyphosphatase-like enzyme catalyzing the hydrolysis of long-chain polyphosphates in the rhizosphere\",\"authors\":\"Natalie Toren , Ran Erel\",\"doi\":\"10.1016/j.plaphy.2025.110263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyphosphates (poly-Ps), composed of two or more phosphate units, become plant-available only after hydrolysis to orthophosphate (ortho-P). While microbial polyphosphatase enzymes are well documented, no evidence exists for extracellular poly-P-hydrolyzing enzymes secreted by plants into the rhizosphere. This study aimed to evaluate plant capacity to hydrolyze long-chain and cyclic poly-P forms and to identify extracellular hydrolytic activity.</div><div>Six plant species were grown in sterile media supplemented with either cyclic poly-P or ortho-P to assess their capacity to hydrolyze and utilize different P sources. Species varied markedly in their ability to use poly-P. Lettuce displayed poor growth, while pepper achieved biomass levels comparable to ortho-P, providing direct evidence of rhizospheric hydrolytic activity. Hydrolysis assays using intact tissues confirmed significantly higher activity in pepper roots compared to lettuce, with leaves showing the lowest activity in both species.</div><div>Protein extracts from pepper roots were assayed for enzymatic activity. Heat treatment eliminated hydrolysis, confirming enzymatic mediation. Liquid chromatography enabled the isolation of a ∼20 kDa protein exhibiting high poly-P hydrolytic activity, exceeding that of known plant phosphatases. Mass spectrometry of the active fraction identified a <em>Capsicum annuum</em> protein (STH-21) with no close bacterial homologs, supporting its plant origin. The active fraction showed strong poly-P hydrolysis, with efficiency declining as chain length increased.</div><div>This study provides the first evidence of a polyphosphatase-like enzyme in vascular plants. The discovery of an extracellular, root-derived enzyme capable of long-chain poly-P hydrolysis challenges the prevailing view that plants depend solely on soil microorganisms for hydrolyzation of complex poly-Ps.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"228 \",\"pages\":\"Article 110263\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942825007910\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825007910","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Evidence for a polyphosphatase-like enzyme catalyzing the hydrolysis of long-chain polyphosphates in the rhizosphere
Polyphosphates (poly-Ps), composed of two or more phosphate units, become plant-available only after hydrolysis to orthophosphate (ortho-P). While microbial polyphosphatase enzymes are well documented, no evidence exists for extracellular poly-P-hydrolyzing enzymes secreted by plants into the rhizosphere. This study aimed to evaluate plant capacity to hydrolyze long-chain and cyclic poly-P forms and to identify extracellular hydrolytic activity.
Six plant species were grown in sterile media supplemented with either cyclic poly-P or ortho-P to assess their capacity to hydrolyze and utilize different P sources. Species varied markedly in their ability to use poly-P. Lettuce displayed poor growth, while pepper achieved biomass levels comparable to ortho-P, providing direct evidence of rhizospheric hydrolytic activity. Hydrolysis assays using intact tissues confirmed significantly higher activity in pepper roots compared to lettuce, with leaves showing the lowest activity in both species.
Protein extracts from pepper roots were assayed for enzymatic activity. Heat treatment eliminated hydrolysis, confirming enzymatic mediation. Liquid chromatography enabled the isolation of a ∼20 kDa protein exhibiting high poly-P hydrolytic activity, exceeding that of known plant phosphatases. Mass spectrometry of the active fraction identified a Capsicum annuum protein (STH-21) with no close bacterial homologs, supporting its plant origin. The active fraction showed strong poly-P hydrolysis, with efficiency declining as chain length increased.
This study provides the first evidence of a polyphosphatase-like enzyme in vascular plants. The discovery of an extracellular, root-derived enzyme capable of long-chain poly-P hydrolysis challenges the prevailing view that plants depend solely on soil microorganisms for hydrolyzation of complex poly-Ps.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.