{"title":"基于分层空间分辨率的交通事故建模统一框架","authors":"Shahrior Pervaz , Tanmoy Bhowmik , Naveen Eluru","doi":"10.1016/j.amar.2025.100398","DOIUrl":null,"url":null,"abstract":"<div><div>Independent traffic crash modeling approaches do not account for the embedded relationships related to the multi-resolution data structure, leading to mis-specified estimations. The recently developed integrated frameworks demonstrate the capability of addressing this drawback. The current study proposes an integrated framework that accommodates information from multiple spatial units and observation resolutions. Specifically, the study develops an integrated model system that allows for the influence of independent variables from disaggregate crash record, micro-facility (segment and intersection) and macro (traffic analysis zone) level simultaneously within the macro level propensity estimation. The empirical analysis considers disaggregate crash records of 1818 segments and 4184 intersections from 300 traffic analysis zones in the City of Orlando, Florida. These crash records contain crash-specific factors, driver and vehicle factors, roadway, road environmental and weather information of each crash record. For micro-facility and macro levels, an exhaustive set of independent variables including roadway and traffic factors, land-use and built environment attributes, and sociodemographic characteristics are considered. The proposed model system can also accommodate for hierarchical correlations among the data across observation resolutions and parameter variability across the system. The empirical analysis is augmented by employing several goodness of fit and predictive measures. The results clearly demonstrate the improved performance offered by the proposed integrated model system relative to the non-integrated model. A validation exercise also highlights the superiority of the proposed framework. The application of the proposed integrated framework can allow transportation professionals to adopt policy-based, site-specific, and outcome-specific solutions simultaneously.</div></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"47 ","pages":"Article 100398"},"PeriodicalIF":12.6000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified framework for modeling traffic crashes from hierarchical spatial resolutions\",\"authors\":\"Shahrior Pervaz , Tanmoy Bhowmik , Naveen Eluru\",\"doi\":\"10.1016/j.amar.2025.100398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Independent traffic crash modeling approaches do not account for the embedded relationships related to the multi-resolution data structure, leading to mis-specified estimations. The recently developed integrated frameworks demonstrate the capability of addressing this drawback. The current study proposes an integrated framework that accommodates information from multiple spatial units and observation resolutions. Specifically, the study develops an integrated model system that allows for the influence of independent variables from disaggregate crash record, micro-facility (segment and intersection) and macro (traffic analysis zone) level simultaneously within the macro level propensity estimation. The empirical analysis considers disaggregate crash records of 1818 segments and 4184 intersections from 300 traffic analysis zones in the City of Orlando, Florida. These crash records contain crash-specific factors, driver and vehicle factors, roadway, road environmental and weather information of each crash record. For micro-facility and macro levels, an exhaustive set of independent variables including roadway and traffic factors, land-use and built environment attributes, and sociodemographic characteristics are considered. The proposed model system can also accommodate for hierarchical correlations among the data across observation resolutions and parameter variability across the system. The empirical analysis is augmented by employing several goodness of fit and predictive measures. The results clearly demonstrate the improved performance offered by the proposed integrated model system relative to the non-integrated model. A validation exercise also highlights the superiority of the proposed framework. The application of the proposed integrated framework can allow transportation professionals to adopt policy-based, site-specific, and outcome-specific solutions simultaneously.</div></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"47 \",\"pages\":\"Article 100398\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213665725000296\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665725000296","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
A unified framework for modeling traffic crashes from hierarchical spatial resolutions
Independent traffic crash modeling approaches do not account for the embedded relationships related to the multi-resolution data structure, leading to mis-specified estimations. The recently developed integrated frameworks demonstrate the capability of addressing this drawback. The current study proposes an integrated framework that accommodates information from multiple spatial units and observation resolutions. Specifically, the study develops an integrated model system that allows for the influence of independent variables from disaggregate crash record, micro-facility (segment and intersection) and macro (traffic analysis zone) level simultaneously within the macro level propensity estimation. The empirical analysis considers disaggregate crash records of 1818 segments and 4184 intersections from 300 traffic analysis zones in the City of Orlando, Florida. These crash records contain crash-specific factors, driver and vehicle factors, roadway, road environmental and weather information of each crash record. For micro-facility and macro levels, an exhaustive set of independent variables including roadway and traffic factors, land-use and built environment attributes, and sociodemographic characteristics are considered. The proposed model system can also accommodate for hierarchical correlations among the data across observation resolutions and parameter variability across the system. The empirical analysis is augmented by employing several goodness of fit and predictive measures. The results clearly demonstrate the improved performance offered by the proposed integrated model system relative to the non-integrated model. A validation exercise also highlights the superiority of the proposed framework. The application of the proposed integrated framework can allow transportation professionals to adopt policy-based, site-specific, and outcome-specific solutions simultaneously.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.