{"title":"虚拟CAT的设计:义务教育算法思维评估的数字化工具","authors":"Giorgia Adorni , Alberto Piatti","doi":"10.1016/j.ijcci.2025.100760","DOIUrl":null,"url":null,"abstract":"<div><div>Algorithmic thinking (AT) is a critical skill in today’s digital society, and it is indispensable not only in computer science-related fields but also in everyday problem-solving. As a foundational component of digital education and literacy, fostering AT skills is increasingly relevant for all students and should become a standard part of compulsory education. However, successfully integrating AT into formal education requires effective teaching strategies and robust and scalable assessment procedures. In this paper, we present the design and development process of the virtual Cross Array Task (CAT), a digital adaptation of an unplugged assessment activity aimed at evaluating algorithmic skills in Swiss compulsory education. The development process followed iterative design cycles, incorporating expert evaluations to refine the tool’s usability, accessibility and functionality. A participatory design study played a dual role in shaping the platform. First, it gathered valuable insights from end users, including students and teachers, to ensure the tool’s relevance and practicality in classroom settings. Second, it facilitated the collection and preliminary analysis of data related to students’ AT skills, providing an initial evaluation of the tool’s assessment capabilities across various developmental stages. This was achieved through a pilot study involving a diverse group of students aged 4 to 12, spanning preschool to lower secondary school levels. The resulting instrument features multilingual support and includes both gesture-based and visual block-based programming interfaces, making it accessible to a broad range of learners. Findings from the pilot study demonstrate the platform’s usability and accessibility, as well as its suitability for assessing AT skills, with preliminary results showing its ability to cater to diverse age groups and educational contexts. Additionally, the CAT has proven capable of handling large-scale, automated assessments, offering a scalable solution for integrating AT evaluation into education systems.</div></div>","PeriodicalId":38431,"journal":{"name":"International Journal of Child-Computer Interaction","volume":"45 ","pages":"Article 100760"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing the virtual CAT: A digital tool for algorithmic thinking assessment in compulsory education\",\"authors\":\"Giorgia Adorni , Alberto Piatti\",\"doi\":\"10.1016/j.ijcci.2025.100760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Algorithmic thinking (AT) is a critical skill in today’s digital society, and it is indispensable not only in computer science-related fields but also in everyday problem-solving. As a foundational component of digital education and literacy, fostering AT skills is increasingly relevant for all students and should become a standard part of compulsory education. However, successfully integrating AT into formal education requires effective teaching strategies and robust and scalable assessment procedures. In this paper, we present the design and development process of the virtual Cross Array Task (CAT), a digital adaptation of an unplugged assessment activity aimed at evaluating algorithmic skills in Swiss compulsory education. The development process followed iterative design cycles, incorporating expert evaluations to refine the tool’s usability, accessibility and functionality. A participatory design study played a dual role in shaping the platform. First, it gathered valuable insights from end users, including students and teachers, to ensure the tool’s relevance and practicality in classroom settings. Second, it facilitated the collection and preliminary analysis of data related to students’ AT skills, providing an initial evaluation of the tool’s assessment capabilities across various developmental stages. This was achieved through a pilot study involving a diverse group of students aged 4 to 12, spanning preschool to lower secondary school levels. The resulting instrument features multilingual support and includes both gesture-based and visual block-based programming interfaces, making it accessible to a broad range of learners. Findings from the pilot study demonstrate the platform’s usability and accessibility, as well as its suitability for assessing AT skills, with preliminary results showing its ability to cater to diverse age groups and educational contexts. Additionally, the CAT has proven capable of handling large-scale, automated assessments, offering a scalable solution for integrating AT evaluation into education systems.</div></div>\",\"PeriodicalId\":38431,\"journal\":{\"name\":\"International Journal of Child-Computer Interaction\",\"volume\":\"45 \",\"pages\":\"Article 100760\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Child-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212868925000406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Child-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212868925000406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Designing the virtual CAT: A digital tool for algorithmic thinking assessment in compulsory education
Algorithmic thinking (AT) is a critical skill in today’s digital society, and it is indispensable not only in computer science-related fields but also in everyday problem-solving. As a foundational component of digital education and literacy, fostering AT skills is increasingly relevant for all students and should become a standard part of compulsory education. However, successfully integrating AT into formal education requires effective teaching strategies and robust and scalable assessment procedures. In this paper, we present the design and development process of the virtual Cross Array Task (CAT), a digital adaptation of an unplugged assessment activity aimed at evaluating algorithmic skills in Swiss compulsory education. The development process followed iterative design cycles, incorporating expert evaluations to refine the tool’s usability, accessibility and functionality. A participatory design study played a dual role in shaping the platform. First, it gathered valuable insights from end users, including students and teachers, to ensure the tool’s relevance and practicality in classroom settings. Second, it facilitated the collection and preliminary analysis of data related to students’ AT skills, providing an initial evaluation of the tool’s assessment capabilities across various developmental stages. This was achieved through a pilot study involving a diverse group of students aged 4 to 12, spanning preschool to lower secondary school levels. The resulting instrument features multilingual support and includes both gesture-based and visual block-based programming interfaces, making it accessible to a broad range of learners. Findings from the pilot study demonstrate the platform’s usability and accessibility, as well as its suitability for assessing AT skills, with preliminary results showing its ability to cater to diverse age groups and educational contexts. Additionally, the CAT has proven capable of handling large-scale, automated assessments, offering a scalable solution for integrating AT evaluation into education systems.