扭曲二维异质结构中莫尔条纹形态和机电响应的地应力诱导调制

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Er Pan , Fan Yang , Qing Liu , Ruixue Wang , Xiao Luo , Biao Dong , Zefen Li , Lei Liang , Jiangang Chen , Fucai Liu
{"title":"扭曲二维异质结构中莫尔条纹形态和机电响应的地应力诱导调制","authors":"Er Pan ,&nbsp;Fan Yang ,&nbsp;Qing Liu ,&nbsp;Ruixue Wang ,&nbsp;Xiao Luo ,&nbsp;Biao Dong ,&nbsp;Zefen Li ,&nbsp;Lei Liang ,&nbsp;Jiangang Chen ,&nbsp;Fucai Liu","doi":"10.1016/j.mser.2025.101065","DOIUrl":null,"url":null,"abstract":"<div><div>Moiré patterns, with the unique stacking configurations and complex electromechanical coupling behaviors, have emerged as a promising platform for exploring novel physical phenomena. However, research on polarization in Moiré patterns remains in its early stages, and the origin and distribution of spontaneous polarization remain unknown. In this work, the out-of-plane polarization distribution of Moiré superlattices in twisted h-BN (t-BN) with a small twist angle is meticulously delineated using piezoelectric force microscopy (PFM) with quadrature phase differential interferometry (QPDI) analyzer. The polarization of AB/BA stacking domains and saddle points regions has been detected, where opposite polarization regions exhibit a 180 degrees phase difference. The strain within the Moiré pattern significantly alters the polarization distribution at saddle points regions, leading to pronounced differences in the electromechanical behaviors between the inner Moiré domain and domain wall regions. Moreover, <em>in-situ</em> stress can modify the saddle points regions, leading to an expansion of these regions and a larger electromechanical response with increasing stress. This work not only deepens the comprehension of the electromechanical performance of Moiré materials, but also lays a solid groundwork for the designing new ferroelectric materials and manipulating their electromechanical response.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"166 ","pages":"Article 101065"},"PeriodicalIF":31.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ stress-induced modulation of Moiré pattern configuration and electromechanical response in twisted 2D heterostructure\",\"authors\":\"Er Pan ,&nbsp;Fan Yang ,&nbsp;Qing Liu ,&nbsp;Ruixue Wang ,&nbsp;Xiao Luo ,&nbsp;Biao Dong ,&nbsp;Zefen Li ,&nbsp;Lei Liang ,&nbsp;Jiangang Chen ,&nbsp;Fucai Liu\",\"doi\":\"10.1016/j.mser.2025.101065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Moiré patterns, with the unique stacking configurations and complex electromechanical coupling behaviors, have emerged as a promising platform for exploring novel physical phenomena. However, research on polarization in Moiré patterns remains in its early stages, and the origin and distribution of spontaneous polarization remain unknown. In this work, the out-of-plane polarization distribution of Moiré superlattices in twisted h-BN (t-BN) with a small twist angle is meticulously delineated using piezoelectric force microscopy (PFM) with quadrature phase differential interferometry (QPDI) analyzer. The polarization of AB/BA stacking domains and saddle points regions has been detected, where opposite polarization regions exhibit a 180 degrees phase difference. The strain within the Moiré pattern significantly alters the polarization distribution at saddle points regions, leading to pronounced differences in the electromechanical behaviors between the inner Moiré domain and domain wall regions. Moreover, <em>in-situ</em> stress can modify the saddle points regions, leading to an expansion of these regions and a larger electromechanical response with increasing stress. This work not only deepens the comprehension of the electromechanical performance of Moiré materials, but also lays a solid groundwork for the designing new ferroelectric materials and manipulating their electromechanical response.</div></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"166 \",\"pages\":\"Article 101065\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X25001421\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25001421","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

波纹图具有独特的叠加结构和复杂的机电耦合行为,是探索新型物理现象的一个有前途的平台。然而,对莫尔条纹偏振的研究还处于初级阶段,自发偏振的起源和分布仍然不清楚。本文利用压电力显微镜(PFM)和正交相位差干涉(QPDI)分析仪,详细描述了具有小扭转角的扭曲h-BN (t-BN)中moir超晶格的面外偏振分布。检测到AB/BA叠加域和鞍点区域的极化,其中相反极化区呈现180度的相位差。莫尔条纹内的应变显著改变了鞍点区域的极化分布,导致莫尔条纹内区和畴壁区机电行为的显著差异。此外,地应力可以改变鞍点区域,导致这些区域的扩展,并随着应力的增加而产生更大的机电响应。这项工作不仅加深了对铁电材料机电性能的理解,而且为设计新型铁电材料和控制其机电响应奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-situ stress-induced modulation of Moiré pattern configuration and electromechanical response in twisted 2D heterostructure
Moiré patterns, with the unique stacking configurations and complex electromechanical coupling behaviors, have emerged as a promising platform for exploring novel physical phenomena. However, research on polarization in Moiré patterns remains in its early stages, and the origin and distribution of spontaneous polarization remain unknown. In this work, the out-of-plane polarization distribution of Moiré superlattices in twisted h-BN (t-BN) with a small twist angle is meticulously delineated using piezoelectric force microscopy (PFM) with quadrature phase differential interferometry (QPDI) analyzer. The polarization of AB/BA stacking domains and saddle points regions has been detected, where opposite polarization regions exhibit a 180 degrees phase difference. The strain within the Moiré pattern significantly alters the polarization distribution at saddle points regions, leading to pronounced differences in the electromechanical behaviors between the inner Moiré domain and domain wall regions. Moreover, in-situ stress can modify the saddle points regions, leading to an expansion of these regions and a larger electromechanical response with increasing stress. This work not only deepens the comprehension of the electromechanical performance of Moiré materials, but also lays a solid groundwork for the designing new ferroelectric materials and manipulating their electromechanical response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信