机器学习辅助规范采样(Mlacs)

IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Aloïs Castellano , Romuald Béjaud , Pauline Richard , Olivier Nadeau , Clément Duval , Grégory Geneste , Gabriel Antonius , Johann Bouchet , Antoine Levitt , Gabriel Stoltz , François Bottin
{"title":"机器学习辅助规范采样(Mlacs)","authors":"Aloïs Castellano ,&nbsp;Romuald Béjaud ,&nbsp;Pauline Richard ,&nbsp;Olivier Nadeau ,&nbsp;Clément Duval ,&nbsp;Grégory Geneste ,&nbsp;Gabriel Antonius ,&nbsp;Johann Bouchet ,&nbsp;Antoine Levitt ,&nbsp;Gabriel Stoltz ,&nbsp;François Bottin","doi":"10.1016/j.cpc.2025.109730","DOIUrl":null,"url":null,"abstract":"<div><div>The acceleration of material property calculations while maintaining <em>ab initio</em> accuracy (1 meV/atom) is one of the major challenges in computational physics. In this paper, we introduce a Python package enhancing the computation of (finite temperature) material properties at the <em>ab initio</em> level using machine learning interatomic potentials (MLIP). The Machine Learning Assisted Canonical Sampling (<span>Mlacs</span>) method, grounded in a self-consistent variational approach, iteratively trains a MLIP using an active learning strategy in order to significantly reduce the computational cost of <em>ab initio</em> simulations.</div><div><span>Mlacs</span> offers a modular and user-friendly interface that seamlessly integrates Density Functional Theory (DFT) codes, MLIP potentials, and molecular dynamics packages, enabling a wide range of applications, while maintaining a near-DFT accuracy. These include sampling the canonical ensemble of a system, performing free energy calculations, transition path sampling, and geometry optimization, all by utilizing surrogate MLIP potentials, in place of <em>ab initio</em> calculations.</div><div>This paper provides a comprehensive overview of the theoretical foundations and implementation of the <span>Mlacs</span> method. We also demonstrate its accuracy and efficiency through various examples, showcasing the capabilities of the <span>Mlacs</span> package.</div></div><div><h3>Program summary</h3><div><em>Program title:</em> <span>Mlacs</span></div><div><em>CPC Library link to program files:</em> <span><span>https://doi.org/10.17632/vtfzjnc6cr.1</span><svg><path></path></svg></span></div><div><em>Licensing provisions:</em> GNU General Public License, version 3</div><div><em>Programming language:</em> Python</div><div><em>Nature of problem:</em> Numerous material properties, whether related to the ground state or finite temperature thermodynamic quantities, cannot be deduced from classical simulations and require accurate but highly demanding <em>ab initio</em> calculations. Enhancing the efficiency of these simulations while preserving a near-<em>ab initio</em> accuracy is one of the biggest challenges in modern computational physics.</div><div><em>Solution method:</em> The emergence of MLIP potentials enables us to tackle this issue. The method implemented in <span>Mlacs</span> allows for the acceleration of <em>ab initio</em> calculations by training a MLIP potential on the fly. At the end of the simulation, <span>Mlacs</span> produces an optimal local surrogate potential, a database that includes a sample of representative atomic configurations with their statistical weights, as well as information on convergence control and thermodynamic quantities.</div><div><em>Additional comments:</em> The seminal version is defined in [1]. The new version [2], <span>Mlacs</span> v1.0.2, works on various architectures and includes several new features.</div></div><div><h3>References</h3><div><ul><li><span>[1]</span><span><div>A. Castellano, F. Bottin, J. Bouchet, A. Levitt, G. Stoltz, <em>Ab initio</em> canonical sampling based on variational inference, Phys. Rev. B 106 (2022) L161110.</div></span></li><li><span>[2]</span><span><div><span>Mlacs</span> github repository, first production version v1.0.2 (2024). <span><span>https://github.com/mlacs-developers/mlacs/tree/main</span><svg><path></path></svg></span></div></span></li></ul></div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"316 ","pages":"Article 109730"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning assisted canonical sampling (Mlacs)\",\"authors\":\"Aloïs Castellano ,&nbsp;Romuald Béjaud ,&nbsp;Pauline Richard ,&nbsp;Olivier Nadeau ,&nbsp;Clément Duval ,&nbsp;Grégory Geneste ,&nbsp;Gabriel Antonius ,&nbsp;Johann Bouchet ,&nbsp;Antoine Levitt ,&nbsp;Gabriel Stoltz ,&nbsp;François Bottin\",\"doi\":\"10.1016/j.cpc.2025.109730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The acceleration of material property calculations while maintaining <em>ab initio</em> accuracy (1 meV/atom) is one of the major challenges in computational physics. In this paper, we introduce a Python package enhancing the computation of (finite temperature) material properties at the <em>ab initio</em> level using machine learning interatomic potentials (MLIP). The Machine Learning Assisted Canonical Sampling (<span>Mlacs</span>) method, grounded in a self-consistent variational approach, iteratively trains a MLIP using an active learning strategy in order to significantly reduce the computational cost of <em>ab initio</em> simulations.</div><div><span>Mlacs</span> offers a modular and user-friendly interface that seamlessly integrates Density Functional Theory (DFT) codes, MLIP potentials, and molecular dynamics packages, enabling a wide range of applications, while maintaining a near-DFT accuracy. These include sampling the canonical ensemble of a system, performing free energy calculations, transition path sampling, and geometry optimization, all by utilizing surrogate MLIP potentials, in place of <em>ab initio</em> calculations.</div><div>This paper provides a comprehensive overview of the theoretical foundations and implementation of the <span>Mlacs</span> method. We also demonstrate its accuracy and efficiency through various examples, showcasing the capabilities of the <span>Mlacs</span> package.</div></div><div><h3>Program summary</h3><div><em>Program title:</em> <span>Mlacs</span></div><div><em>CPC Library link to program files:</em> <span><span>https://doi.org/10.17632/vtfzjnc6cr.1</span><svg><path></path></svg></span></div><div><em>Licensing provisions:</em> GNU General Public License, version 3</div><div><em>Programming language:</em> Python</div><div><em>Nature of problem:</em> Numerous material properties, whether related to the ground state or finite temperature thermodynamic quantities, cannot be deduced from classical simulations and require accurate but highly demanding <em>ab initio</em> calculations. Enhancing the efficiency of these simulations while preserving a near-<em>ab initio</em> accuracy is one of the biggest challenges in modern computational physics.</div><div><em>Solution method:</em> The emergence of MLIP potentials enables us to tackle this issue. The method implemented in <span>Mlacs</span> allows for the acceleration of <em>ab initio</em> calculations by training a MLIP potential on the fly. At the end of the simulation, <span>Mlacs</span> produces an optimal local surrogate potential, a database that includes a sample of representative atomic configurations with their statistical weights, as well as information on convergence control and thermodynamic quantities.</div><div><em>Additional comments:</em> The seminal version is defined in [1]. The new version [2], <span>Mlacs</span> v1.0.2, works on various architectures and includes several new features.</div></div><div><h3>References</h3><div><ul><li><span>[1]</span><span><div>A. Castellano, F. Bottin, J. Bouchet, A. Levitt, G. Stoltz, <em>Ab initio</em> canonical sampling based on variational inference, Phys. Rev. B 106 (2022) L161110.</div></span></li><li><span>[2]</span><span><div><span>Mlacs</span> github repository, first production version v1.0.2 (2024). <span><span>https://github.com/mlacs-developers/mlacs/tree/main</span><svg><path></path></svg></span></div></span></li></ul></div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"316 \",\"pages\":\"Article 109730\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525002322\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525002322","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在保持从头计算精度(1 meV/原子)的同时加速材料性能计算是计算物理学的主要挑战之一。在本文中,我们介绍了一个Python包,该包使用机器学习原子间势(MLIP)在从头算水平上增强(有限温度)材料特性的计算。机器学习辅助规范采样(Mlacs)方法基于自洽变分方法,使用主动学习策略迭代训练MLIP,以显着降低从头开始模拟的计算成本。Mlacs提供了一个模块化和用户友好的界面,无缝集成密度泛函理论(DFT)代码、MLIP势和分子动力学包,实现了广泛的应用,同时保持了接近DFT的精度。这些方法包括对系统的正则系综进行采样,执行自由能计算,过渡路径采样和几何优化,所有这些都是通过使用替代MLIP势来代替从头计算。本文全面概述了Mlacs方法的理论基础和实现方法。我们还通过各种示例演示了其准确性和效率,展示了Mlacs包的功能。程序摘要程序标题:MlacsCPC库链接到程序文件:https://doi.org/10.17632/vtfzjnc6cr.1Licensing条款:GNU通用公共许可证,版本3编程语言:python问题的性质:许多材料属性,是否与基态或有限温度热力学量有关,不能从经典模拟中推断出来,需要精确但要求很高的从头计算。提高这些模拟的效率,同时保持接近从头计算的精度是现代计算物理学中最大的挑战之一。解决方法:MLIP电位的出现使我们能够解决这一问题。在Mlacs中实现的方法允许通过动态训练MLIP势来加速从头计算。在模拟结束时,Mlacs产生一个最优的局部代理势,一个数据库,其中包括具有统计权重的代表性原子配置样本,以及关于收敛控制和热力学量的信息。附加注释:开创性的版本在[1]中定义。新版本Mlacs v1.0.2适用于各种体系结构,并包含了几个新特性。Castellano, F. Bottin, J. Bouchet, A. Levitt, G. Stoltz,基于变分推理的从头算标准抽样,物理学报。Rev. b106 (2022) L161110。Mlacs github存储库,第一个生产版本v1.0.2(2024)。https://github.com/mlacs-developers/mlacs/tree/main
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning assisted canonical sampling (Mlacs)
The acceleration of material property calculations while maintaining ab initio accuracy (1 meV/atom) is one of the major challenges in computational physics. In this paper, we introduce a Python package enhancing the computation of (finite temperature) material properties at the ab initio level using machine learning interatomic potentials (MLIP). The Machine Learning Assisted Canonical Sampling (Mlacs) method, grounded in a self-consistent variational approach, iteratively trains a MLIP using an active learning strategy in order to significantly reduce the computational cost of ab initio simulations.
Mlacs offers a modular and user-friendly interface that seamlessly integrates Density Functional Theory (DFT) codes, MLIP potentials, and molecular dynamics packages, enabling a wide range of applications, while maintaining a near-DFT accuracy. These include sampling the canonical ensemble of a system, performing free energy calculations, transition path sampling, and geometry optimization, all by utilizing surrogate MLIP potentials, in place of ab initio calculations.
This paper provides a comprehensive overview of the theoretical foundations and implementation of the Mlacs method. We also demonstrate its accuracy and efficiency through various examples, showcasing the capabilities of the Mlacs package.

Program summary

Program title: Mlacs
CPC Library link to program files: https://doi.org/10.17632/vtfzjnc6cr.1
Licensing provisions: GNU General Public License, version 3
Programming language: Python
Nature of problem: Numerous material properties, whether related to the ground state or finite temperature thermodynamic quantities, cannot be deduced from classical simulations and require accurate but highly demanding ab initio calculations. Enhancing the efficiency of these simulations while preserving a near-ab initio accuracy is one of the biggest challenges in modern computational physics.
Solution method: The emergence of MLIP potentials enables us to tackle this issue. The method implemented in Mlacs allows for the acceleration of ab initio calculations by training a MLIP potential on the fly. At the end of the simulation, Mlacs produces an optimal local surrogate potential, a database that includes a sample of representative atomic configurations with their statistical weights, as well as information on convergence control and thermodynamic quantities.
Additional comments: The seminal version is defined in [1]. The new version [2], Mlacs v1.0.2, works on various architectures and includes several new features.

References

  • [1]
    A. Castellano, F. Bottin, J. Bouchet, A. Levitt, G. Stoltz, Ab initio canonical sampling based on variational inference, Phys. Rev. B 106 (2022) L161110.
  • [2]
    Mlacs github repository, first production version v1.0.2 (2024). https://github.com/mlacs-developers/mlacs/tree/main
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信